• Title/Summary/Keyword: temperature Compensation

Search Result 573, Processing Time 0.038 seconds

Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation (리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계)

  • Song, Jung-Yong;Huh, Chang-Su
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools (공작기계 원점 열변형오차의 모델링 및 보상제어)

  • 정성종
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.4
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Study on Remote Communication System for Automatic Water Meter Reading using Embedded Processor (임베디드프로세서를 이용한 상수도 자동검침용 원격통신시스템에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2718-2721
    • /
    • 2011
  • This research developed a remote communication system for automatic water meter reading and charge calculation from the field of a house or apartment complexes within the same district. Developed system was applied to perform measurements of the pulse-sensing technology, the minimum power consumption, temperature compensation, short-range wireless communications technology, the handset and wireless communication capabilities of the DB management embedded software to efficiently control. Through this reading-related tasks that are required in a temporal, material and human resources can be minimized.

Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system

  • Zhou, Lu;Zhang, Chao;Ni, Yi-Qing;Wang, Chung-Yue
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.537-548
    • /
    • 2018
  • A tunnel deformation monitoring system is developed with the use of fiber Bragg grating (FBG) sensing technique, aiming at providing continuous monitoring of railway tunnel deformation in the long term, and early warning for the rail service maintainers and authorities to avoid catastrophic consequences when significant deformation occurs. Specifically, a set of FBG bending gauges with the ability of angle measurement and temperature compensation is designed and manufactured for the purpose of online monitoring of tunnel deformation. An overall profile of lateral tunnel displacement along the longitudinal direction can be obtained by implementing an array of the FBG bending gauges interconnected by rigid rods, in conjunction with a proper algorithm. The devised system is verified in laboratory experiments with a test setup enabling to imitate various patterns of tunnel deformation before the implementation of this system in an in-service high-speed railway (HSR) tunnel.

Thermal Kinetics of Color Changes of Purple Sweet Potato Anthocyanin Pigment (자색고구마 Anthocyanin 색소의 가열에 대한 속도론적 연구)

  • Lee, Lan-Sook;Rhim, Jong-Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.497-501
    • /
    • 1997
  • Kinetic parameters on heat-induced color changes of anthocyanin pigment from purple sweet potato were determined in the temperature range of $121{\sim}141^{\circ}C$. Color change determined by a browning index $(A_{532}\;nm/A_{420}\;nm)$ followed second order reaction kinetics. Activation energy values of purple sweet potato pigment solutions of pH 2.0, 3.0, 4.0 and 5.0 were 69.57, 76.68, 81.07 and 92.98 kJ/mol, respectively, indicating that temperature dependency of the reaction increased with pH. Apparent kinetic compensation effect between preex-ponential factor and activation energy value was observed.

  • PDF

Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구)

  • Park, Hyung-Seok;Shin, Ho-Hyun;Seo, Sang-Won;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.223-230
    • /
    • 2006
  • The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

Drift error compensation for vision-based bridge deflection monitoring

  • Tian, Long;Zhang, Xiaohong;Pan, Bing
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.649-657
    • /
    • 2019
  • Recently, an advanced video deflectometer based on the principle of off-axis digital image correlation was presented and advocated for remote and real-time deflection monitoring of large engineering structures. In engineering practice, measurement accuracy is one of the most important technical indicators of the video deflectometer. However, it has been observed in many outdoor experiments that data drift often presents in the measured deflection-time curves, which is caused by the instability of imaging system and the unavoidable influences of ambient interferences (e.g., ambient light changes, ambient temperature variations as well as ambient vibrations) in non-laboratory conditions. The non-ideal unstable imaging conditions seriously deteriorate the measurement accuracy of the video deflectometer. In this work, to perform high-accuracy deflection monitoring, potential sources for the drift error are analyzed, and a drift error model is established by considering these error sources. Based on this model, a simple, easy-to-implement yet effective reference point compensation method is proposed for real-time removal of the drift error in measured deflections. The practicality and effectiveness of the proposed method are demonstrated by in-situ deflection monitoring of railway and highway bridges.

Magnetic Properties of Bismuth Substituted Terbium Iron Garnet (Tb3-xBixFe5O12(x=0.5, 0.75, 1.0, 1.25)의 자기적 특성 연구)

  • Park, Il-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.5
    • /
    • pp.245-248
    • /
    • 2006
  • [ $Tb_{3-x}Bi_xFe_5O_{12}$ ] has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, $M\"{o}ssbauer$ spectroscopy. The crystal structures were found to be a cubic garnet structure with space group Ia3d. The lattice constants increase linearly with increasing bismuth concentration. With increase of bismuth substitution, the $N\'{e}el$ temperature increases but the compensation temperature decreases. We have observed the negative magnetization in Bi-TbIG system which has not been reported in garnet systems. $M\"{o}ssbauer$ spectra were measured at various temperatures from 4.2 K to $N\'{e}el$ temperature. The isomer shifts at room temperature are ${\sim}0.26mm/s$ which is consistent with ferric state.

Effect of the Temperature Change on the Cone Tip Resistance (지중의 온도변화가 콘 선단저항력에 미치는 영향)

  • Kim, Rae-Hyun;Lee, Woo-Jin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.361-367
    • /
    • 2009
  • The criteria such as ASTM recommends that the zero reading process of CPT must be performed in the same temperature condition with underground in order to reduce the effect of temperature. However, this method can not consider the change of temperature occurred during penetration. In this study, ultra small size temperature sensor with 0.5mm in diameter is manufactured to estimate and compensate the effect of temperature by using FBG sensor. The continuous temperature changes are monitored during cone penetration by using FBG temperature sensor installed in cone penetrometer. The temperature compensated tip resistances show the uniform and similar distributions with depth in different with originally measured tip resistance in cohesive soil. This study verifies that the tip resistances measured by previous zero reading method are affected by the change of underground temperature, and suggests the new temperature compensation technique using by FBG temperature sensor.

  • PDF