• 제목/요약/키워드: temperature Compensation

검색결과 571건 처리시간 0.028초

Oxygen이 주입된 $p^+$-InGaAs층에서의 compensation 특성 (The characteristics of $p^+$-InGaAs layer implanted with oxygen)

  • 시상기;김성준
    • 한국진공학회지
    • /
    • 제6권4호
    • /
    • pp.343-347
    • /
    • 1997
  • 전기적 고립(isolation) 효과를 알아보기 위해 $P^+$-InGaAs층에 oxygen을 이온 주입하 여 annealing 온도에 따른 compensation mechnism을 조사하였다. $500^{\circ}C$이하에서는 전도도 가 손상에 관련된 트랩들에 의해 지배되며 500~$600^{\circ}C$영역에서는 oxygen의 활성화로 acceptor를 compensate시키는 화학적 효과를 나타냈으며 특히 $600^{\circ}C$에서 type conversion(p $\longrightarrow$n-type)이 일어났다. 이는 annealing온도가 증가함에 따라 oxygen의 화학적 작용에 의해 생성된 donor로 작용하는 결함들의 증가에 기인하며, 이때 면 저항의 활성화 에너지는 24.2meV로 shallow donor로 작용하는 In interstitial과 같은 native defect들이 형성되기 때 문이라 생각된다. Type conversion이 일어난 $600^{\circ}C$ 이상의 영역에서는 이온 주입에 의해 형 성된 interstitial Be의 재활성화로 인해 n형 전도도가 감소하는 경향을 보였다.

  • PDF

60GHz대역 무선통신장애 해결을 위한 온도보상장치 개발 (The Development of the Temperature Compensation Equipment to minimize Error in the Wireless Transmission System at 60GHz Band)

  • 명병수;구성득
    • 한국산업융합학회 논문집
    • /
    • 제8권2호
    • /
    • pp.97-104
    • /
    • 2005
  • Usually, propagation attenuation of millimeter wave occurs by rainfall, snowfall, temperature, effect of pressure of air. In 60GHz wave band wireless communication network, temperature change becomes big factor of propagation loss department. Also, temperature change causes disturbance of 60GHz frequency at transceiver. In this study, we used 60GHz transceiver and found propagation loss of wireless path and operating frequency disturbance characteristics. In transceiver that there is no temperature compensated device, operating frequency of TX changed by 60.865GHz at temperature of $-5^{\circ}C$, and appeared by 60.730GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 100MHz, greatly. But, in transceiver that there is temperature compensated device, operating frequency of TX changed by 60.830GHz at temperature of $-5^{\circ}C$, and appeared by 60.710GHz when is $50^{\circ}C$. Therefore, operating frequency change width by temperature change are about 20MHz. According to these result, we constructed between buildings examination wireless site for point to point wireless communication using 60GHz band transceivers who have do temperature compensated device, and investigated data transmission characteristics about ambient temperature change. Therefore, if use transceiver that have temperature compensated device, may overcome the wireless transmission error in 60GHz band wireless communication LAN networks despite of ambient temperature change.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

Properties of Non-dispersive infrared Ethanol Gas Sensors according to the Irradiation Energy

  • Kim, JinHo;Yi, SeungHwan
    • 센서학회지
    • /
    • 제26권3호
    • /
    • pp.168-172
    • /
    • 2017
  • A nondispersive infrared (NDIR) ethanol gas sensor was prototyped with ASIC implemented thermopile sensor, which included a temperature sensor and two ellipsoidal waveguide structures. The temperature dependency of the two ethanol sensors (with partially blocked and intact structures) has been characterized. The two ethanol gas sensors showed linear output voltages initially when varying the ambient temperature from 253 K to 333 K. The slope of the temperature sensor presented a constant value of 15 mV/K. After temperature compensation, the ethanol gas sensor estimated ethanol concentrations with larger errors of 20 to 25% below 200 ppm. However, the estimation errors were reduced to between -10 and +1 % from 253 K to 333 K above 200 ppm ethanol gas concentration in this research.

Kinetics of Initial Water Vapor Adsorption by Inonotus obliquus Mushroom Powders

  • Lee, Min-Ji;Seog, Eun-Ju;Lee, Jun-Ho
    • Preventive Nutrition and Food Science
    • /
    • 제12권2호
    • /
    • pp.111-114
    • /
    • 2007
  • Water vapor adsorption kinetics of Inonotus mushroom powders were investigated in temperature and water activity ranges of 20 to 40$^{\circ}C$ and 0.30 to 0.81, respectively. Initial water vapor adsorption rate of mushroom powders increased with increases in temperature and water activity. The temperature dependency of water activity followed the Clausius-Clapeyron equation. The net isosteric heat of sorption increased with an increase in water activity. Water vapor adsorption kinetics of the mushroom powders can be well described by a simple empirical model. Temperature dependency of the reaction rate constant followed the Arrhenius relationship. The activation energy ranged from 56.86 to 91.35 kJ/mol depending on water activity. Kinetic compensation relationship was observed between k$_o$ and E$_a$ with the isokinetic temperature of 790.27 K.

U-Healthcare시스템을 위한 PPG의 피부표면의 온도변화보상 (Compensation of Skin Surface Temperature Variation on the PPG for the U-Healthcare System)

  • 염호준
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권6호
    • /
    • pp.319-324
    • /
    • 2011
  • 본 논문에서는 혈압과 광용적맥파, 국부피부온도변화에 따른 심혈관 파라메터의 통계적 변화와 관계에 대해 연구하였다. 국부피부온도변화는 Finometer의 혈압, 광용적맥파 그리고 총말초저항에 영향을 주었고 오실로메트릭 혈압, 심박수, 심박출량에는 영향을 주지 않는 결과를 얻었다. 그러므로 온도변화가 있는 환경에서 에러를 줄이기 위해 심혈관계의 상태를 광용적맥파로 평가하기위해서는 온도를 제어하거나 보상해 주어야 한다.

Passive Temperature Compensation Package for Optical Long Period Fiber Gratings

  • Lee, Sang-Mae;Gu, Xijia
    • Journal of the Optical Society of Korea
    • /
    • 제3권2호
    • /
    • pp.74-79
    • /
    • 1999
  • We present a simple design rule for a passive temperature-compensating optical package. We also present experimentally that a package fabricated by using the design rule compensates the temperature dependence of the resonant wavelength of an optical long period fiber grating by varying the strain inside the fiber, The package fabricated in this work consists of two pieced of brass tube, 10 mm long, and a piece of nylon rod, 45.4 mm long. It is shown that the package can compensate the temperature-induce wavelength shifts of the long period grating to a range of 6.8 pm/$^{\circ}C$, compared with 0..48 nm/$^{\circ}C$ for an uncompensated grating. The reduced strength of the fiber caused by exposure to ultraviolet limits the performance of the package to the range operating temperature form -3 $^{\circ}C$ to 7$0^{\circ}C$.

Zirconium Titanate 세라믹 유전체에서 $Ta_2O_{5}$ 첨가가 유전특성에 미치는 영향 (The Influence of $Ta_2O_{5}$ Addition on Dielectric Characteristics of Zirconium Titanate Ceramics)

  • 이석진;이창화;이상석;최태구
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1992년도 춘계학술대회 논문집
    • /
    • pp.129-132
    • /
    • 1992
  • Rutile was among the first dielectric materials used. However, rutile exhibits a very high temperature coefficient of capacitance (about -750[ppm/$^{\circ}C$]) which resticts its practical application. Since this first use of titania, other materials have also been studied with the object of decreasing the temperature dependence whilst retaining favorable dielectric loss, Q, and relative permittivity. The temperature coefficient of temperature compensation capacitor is +100~750[ppm/$^{\circ}C$], dielectric constant 10~150. Low loss ceramics with dielectric constants in the 10~150 range also found application. Recently, their applications are extended in EMI filter and dielectric materials for microwave. There temperature coefficient of dielectric materials approaches 0[ppm/$^{\circ}C$]. The dielectric preperties of zirconia titanate ceramics prepared by addition of $Ta_2O_{5}$ were investigated.

  • PDF

리튬 배터리 퓨즈 온도 보상에 따른 과전류 시퀀스 제어 알고리즘 설계 (Design of Over Current Sequence Control Algorithm According to Lithium Battery Fuse Temperature Compensation)

  • 송정용;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제32권1호
    • /
    • pp.58-63
    • /
    • 2019
  • Lithium-ion batteries used for IT, automobiles, and industrial energy-storage devices have battery management systems (BMS) to protect the battery from abnormal voltage, current, and temperature environments, as well as safety devices like, current interruption device (CID), fuse, and vent to obtain positive temperature coefficient (PTC). Nonetheless, there are harmful to human health and property and damage the brand image of the manufacturer because of smoke, fire, and explosion of lithium battery packs. In this paper, we propose a systematic protection algorithm combining battery temperature, over-current, and interconnection between protection elements to prevent copper deposition, internal short circuit, and separator shrinkage due to frequent and instantaneous over-current discharges. The parameters of the proposed algorithm are suggested to utilize the experimental data in consideration of battery pack operating conditions and malicious conditions.

공작기계 원점 열변형오차의 모델링 및 보상제어 (Modeling and Compensatory Control of Thermal Error for the Machine Orgin of Machine Tools)

  • 정성종
    • 한국생산제조학회지
    • /
    • 제8권4호
    • /
    • pp.19-28
    • /
    • 1999
  • In order to control thermal deformation of the machine origin of machine tools a empirical model and a compensation system have been developed, Prior to empirical modeling the volumetric error considering shape errors and joint errors of slides is formulated through the homogeneous transformation matrix (HTM) and kinematic chain. Simulation results of the HTM method show that the thermal error of the machine origin is more critical than position-dependent errors. In order to make a stable and effective software error compensation system the GMDH (Group Method of Data Handling) models are constructed to estimate the thermal deformation of the machine origin by measuring deformation data and temperature data. A test bar and gap sensors are used to measure the deformation data. In order to compensate the estimated error the work origin shift method is developed by implementing a digital I/O interface board between a CNC controller and an IBM PC. The method shifts the work origin as much as the amounts which are calculated by the pre-established thermal error model. The experiment results for a vertical machining center show that the thermal deformation of the machine origin is reduced within $\pm$5$mu extrm{m}$.

  • PDF