• Title/Summary/Keyword: tectonic boundary

Search Result 62, Processing Time 0.025 seconds

Geological Structure of the Metamorphic Rocks in the Muju-Seolcheon Area, Korea: Consideration on the Boundary of Ogcheon Belt and Ryeongnam Massif (무주-설천 지역 변성암류의 지질구조: 옥천벨트와 영남육괴의 경계부 고찰)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • The Muju-Seolcheon area, which is known to be located in the boundary of Ogcheon Belt and Ryeongnam Massif (OB-RM), consists of age unknown or Precambrian metamorphic rocks (MRs) [banded biotite gneiss, metasedimentary rocks (black phyllite, mica schist, crystalline limestone, quartzite), granitic gneiss, hornblendite], Mesozoic sedimentary and igneous rocks. In this paper are researched the structural characteristics of each deformation phase from the geometric and kinematic features and the developing sequence of multi-deformed rock structures of the MRs, and is considered the boundary location of OB-RM with the previous geochemical, radiometric, structure geological data. The geological structure of this area is at least formed through four phases (Dn-1, Dn, Dn+1, Dn+2) of deformation. The Dn-1 is the deformation which took place before the formation of Sn regional foliation and formed Sn-1 foliation folded by Fn fold. The Dn is that which formed the Sn regional foliation. The predominant Sn foliation shows a NE direction which matches the zonal distribution of MRs. A-type or sheath folds, in which the Fn fold axis is parallel to the direction of stretching lineation, are often observed in the crystalline limestone. The Dn+1 deformation, which folded the Sn foliation, took place under compression of NNW~NS direction and formed Fn+1 fold of ENE~EW trend. The Sn foliation is mainly rearranged by Fn+1 folding, and the ${\pi}$-axis of Sn foliation, which is dispersed, shows the nearly same direction as the predominant Fn+1 fold axis. The Dn+2 deformation, which folded the Sn and Sn+1 foliations, took place under compression of E-W direction, and formed open folds of N-S trend. And the four phases of deformation are recognized in all domains of the OB-RM, and the structural characteristics and differences to divide these tectonic provinces can not be observed in this area. According to the previous geochemical and radiometric data, the formation or metamorphic ages of the MRs in and around this area were Middle~Late Paleproterozoic. It suggests that the crystalline limestone was at least deposited before Middle Paleproterozoic. This deposition age is different in the geologic age of Ogcheon Supergroup which was recently reported as Neoproterozoic~Late Paleozoic. Therefore, the division of OB-RM tectonic provinces in this area, which regards the metasedimentary rocks containing crystalline limestone as age unknown Ogcheon Group, is in need of reconsideration.

Deformational Phased Structural Characteristics of the Hadong Southern Anorthosite Complex and its Surrounding Area in the Jirisan Province, Yeongnam Massif, Korea (영남육괴 지리산지구에서 하동 남부 회장암복합체와 그 주변지역의 변형단계별 구조적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.179-195
    • /
    • 2013
  • The study area, which is located in the southeastern part of the Jirisan province, Yeongnam massif, Korea, is mainly composed of the Precambrian Hadong southern anorthosite complex (HSAC), the Jirisan metamorphic rock complex (JMRC) and Cretaceous sedimentary rock which unconformably covers them. Lithofacies distribution of the Precambrian constituent rocks mainly shows NS and partly NE trends. This paper researched deformational phased structural characteristics of HSAC and JMRC based on the geometric and kinematic features and the forming sequence of multi-deformed rock structures, and suggests that the geological structures of this area was formed through at least three phases of ductile deformation. The first phase ($D_1$) of deformation happened due to the large-scale top-to-the SE shearing, and formed the sheath or "A"-type fold and the regional tectonic frame of NE trend in the HSAC and JMRC. The second phase ($D_2$) of deformation, like the $D_1$ deformation, regionally occurred under the EW-directed tectonic compression, and most of the NE-trending $D_1$ tectonic frame was reoriented into NS trend by the active and passive folding, and the persistent and extensive ductile shear zone (Hadong shear zone) with no less than 2.3~1.4 km width was formed along the eastern boundary of HSAC and JMRC through the mylonitization process. The third phase ($D_3$) of deformation occurred under the NS-directed tectonic compression, and partially reoriented the pre-$D_3$ structural elements into ENE or WNW direction. It means that the distribution of Precambrian lithofacies showing NE trend locally and NS trend widely in this area is closely associated with the $D_1$ and $D_2$ deformations, respectively, and the NS-trending Hadong shear zone in the eastern part of Hadong northern anorthosite complex, which is located in the north of Deokcheon River, also extends into the HSAC with continuity.

Thermoelastic Aspects of the San Andreas Faults under Very Low Strength (낮은 강도를 갖는 산 안드레아 단층의 열탄성 특성)

  • Park, Moo-Choon;Han, Uk
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, the data used for the models were a set of 56 geologic estimates of long-term fault slip rates. The hest models were those in which mantle drag was convergent on the Transverse Ranges in the San Andreas fault system, and faults had a low friction (${\mu}$= 0.3). It is clearly important to decide whether these cases of low strength are local anomalies or whether they are representative. Furthermore, it would be helpful to determine fault strength in as many tectonic settings as possible. Analysis of data was considered by unsuspected sources of pore pressure, or even to question the relevance of the friction law. To contribute to the solution of this problem, three attempts were tried to apply finite element method that would permit computational experiments with different hypothesized fault rheologies. The computed model has an assumed rheology and plate tectonic boundary conditions, and produces predictions of present surface velocity, strain rate, and stress. The results of model will be acceptably close to reality in its predictions of mean fault slip rates, stress directions and geodetic data. This study suggests some implications of the thermoelastic characteristics to interpret the relationship with very low strength of San Andreas fault system.

  • PDF

Age Distribution of the Jurassic Plutons in Korean Peninsula (한반도 쥬라기 심성암의 연령분포)

  • Park, Kye-Hun;Kim, Myong-Jung;Yang, Yun-Seok;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.269-281
    • /
    • 2010
  • The compiled recent precise age data for the plutonic intrusions of Korean peninsula display that the Jurassic igneous activities occurred on the Yeongnam massif since ca. 200 Ma close to the boundary between Triassic and Jurassic. Since then the igneous activities propagated toward further north through time. The Jurassic igneous activities over the Okcheon belt and its vicinity areas began at about 180 Ma when igneous activities of the Yeongnam massif had been almost over. The igneous activities within the Gyeonggi massif located further north started at somewhat later period ca. 170 Ma. Jurassic igneous activities over the Okcheon belt and its vicinity areas ended a little earlier than the Gyeonggi massif area. Such timing differences upon geographic positions within the Korean peninsula seem to reflect variations in distance to the trench, in the direction of subduction, and/or in subduction angle. Therefore precise understanding of the variations in emplacement ages of Jurassic plutons within Korean peninsula can be a important clue to reconstruct the paleogeography and tectonic environment of the northeast Asia during the Jurassic.

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

Morphotectectics of the Shackleton Fracture Zone around the Antarctic-Scotia plate boundary off the northern Antarctic Peninsula (남극반도 북부 남극-스코시아 판경계부에서의 셰클턴 파쇄대의 지형지체구조)

  • Jin, Young-Keun;Kim, Yea-Dong;Nam, Sang-Heon;Kim, Kyu-Joong
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.141-152
    • /
    • 2000
  • In the vicinity of the Antarctic-Scotia plate boundary off Elephant Island(EI), geophysical data(multichannel seismic and gravity data) reveal rapid structural variation of the Shackleton Fracture Zone(SFZ) along its strike. The SFZ ridge terminates in front of the Antarctic Peninsula margin, whereas the transform fault of the SFZ continues farther southeast near EI and the width of the SFZ broadens toward the southeast. Accordingly, the SFZ transform fault changes its morphology along its strike as (1) a graben structure along the high Shackleton ridge in Drake Passage, (2) a half-graben structure in oceanic crust just southeast of the Antarctic-Scotia plate boundary, and (3) splay faults deforming the margin of EI. Two phases of tectonic deformation are clearly observed along the transform fault. Major extensional deformation had formed a large-scale half-graben during roughly about $10{\sim}20$ Ma when Drake Passage had opened. And then, the Shackleton fault has been reactivated with reverse sense, which has been caused by recent convergence between Antarctic and Scotia plates due to westward movement of the Scotia plate since 6 Ma.

  • PDF

The tectonic evolution of South Korea and Northeast Asia from Paleoproterozoic to Triassic (원생대 이후 트라이아스기까지의 남한과 동북아시아의 지구조 진화)

  • Oh, Chang-Whan
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.59-87
    • /
    • 2012
  • Recent studies reveal that eclogite formed in the Hongseong area and post collision igneous rocks occurred throughout the Gyeonggi Massif during the Triassic Songrim Orogeny. These new findings derive the tectonic model in which the Triassic Qinling-Dabie-Sulu collision belt between the North and South China blocks extends into the Hongseong-Yangpyeong-Odesan collision belt in Korea. The belt may be further extended into the late Paleozoic subduction complex in the Yanji belt in North Korea through the Paleozoic subduction complex in the inner part of SW Japan. The collision belt divides the Gyeonggi Massif into two parts; the northern and southern parts can be correlated to the North and South China blocks, respectively. The collision had started from Korea at ca. 250 Ma and propagated to China. The collision completed during late Triassic. The metamorphic conditions systematically change along the collision belt:. ultrahigh temperature metamorphism occurred in the Odesan area at 245-230Ma, high-pressure metamorphism in the Hongseong area at 230 Ma and ultra high-pressure metamorphism in the Dabie and Sulu belts. This systematic change may be due to the increase in the depth of slab break-off towards west, which might be related to the increase of the amounts of subducted ocecnic slab towards west. The wide distribution of Permo-Triassic arc-related granitoids in the Yeongnam Massif and in the southern part of the South China block indicate the Permo-Triassic subduction along the southern boundary of the South China block which may be caused by the Permo-Triassic collision between the North and South China blocks. These studies suggest that the Songrim orogeny constructed the Korean Peninsula by continent collision and caused the subduction along the southern margin of the Yeongnam Massif. Both the northern and southern Gyeonggi Massifs had undergone 1870-1840 Ma igneous and metamorphic activities due to continent collision and subduction related to the amalgamation of Colombia Supercontinent. The Okcheon metamorphic belt can be correlated to the Nanhua rift formed at 760 Ma within the South China blocks. In that case, the southern Gyeonggi Massif and Yeongnam Massif can be correlated to the Yangtz and Cathaysia blocks in the South China block, respectively. Recently possible Devonian or late Paleozoic sediments are recognized within the Gyeonggi Massif by finding of Silurian and Devonian detrital zircons. Together with the Devonian metamorphism in the Hongseong and Kwangcheon areas, the possible middle Paleozoic sediments indicate an active tectonic activity within the Gyeonggi Massif during middle Paleozoic before the Permo-Triassic collision.

The Boundary Between Sino-Korea Craton and Yangtze Craton and Its Extension to the Korean Peninsula (중.한 및 양쯔 육괴 경계와 한반도로의 연장가능성)

  • Mingguo, Zhai;Wenjun, Liu
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.15-26
    • /
    • 1998
  • The Dabie-Sulu ultra-high pressure metamorphic (UHPM) zone is commonly suggested to be a collisional belt between the Sino-Korea craton (North China craton) and Yangtze craton (Zhai and Cong, 1996). Two important questions in formulating the tectonic evolution of the northeast Asia are : (1) the boundary between the UHPM zone and the Sino-Korea craton in the Shandong peninsula and (2) the extension of this Chinese UHPM zone into the Korean peninsula. There have been different opinions on the boundary between UHPM zone and the Sino-Korea craton in the Shandong peninsula. For example, the boundary has been suggested to be the Tan-Lu fault (Bai et al., 1993; Wang and Cong, 1996), or Wulian-Rongcheng fault (Cao et al., 1990). Our recent study finds out new evidences, indicating that the possible boundary is the Kunyushan granitoid complex zone, which occurs along the Wulian-Muping fault. Our new evidences are : (1) the basic rocks west to the Kunyushan granitoid zone are high-pressure granulites rather than eclogites (Zhai, 1996) with their Sm-Nd isotopic ages of 1750 Ma and 2788 Ma, representing their retrograde metamorphic and petrogenetic ages, respectively (Li et al., 1997b); (2) the orthogneisses west to the Kunyushan granitoid zone yield 2600-2900 Ma zircon ages and 1600-2020 Ma Rb-Sr and chemical U-Th-total Pb ages, with no younger data (Enami et al., 1993; Ishizaka et al., 1994), having a typical characteristic for the early Precambrian rocks in the Sino-Korea craton; (3) the orthogneisses east to the Kunyushan granitoid zone have 110-320 Ma isotopic ages with a peak value of 180-230 Ma, showing a typical characteristic of metamorphic rocks in the UHPM zone; (4) the Kunyushan granitoid zone consists of numerous granitic bodies, stocks and veins, which have 1900-2000 Ma, 610-710 Ma and 124-180 Ma istotopic ages indicating a long and complicated evolution history of this granitoid zone. There are many lenses and enclosures of metamorphic rocks from the Sino-Korea craton and Sulu UHPM belt in the Kunyushan granitoid zone. Zhai et al. (1998) have defined the Kunyushan granitoid zone as the Jiaodong Boundary complex zone. Some geologists suggested that the UHPM zone extend eastward to the Korea peninsula (Yin and Nie, 1993; Wang and Cong, 1996) and possibly to the Imjingang belt (Chang, 1994; Ree et al., 1996). Unfortunately, there has not been a conclusive evidence indicating that UHPM rocks occur in the Korea peninsula. In this regard, it becomes more important to compare metamorphic rocks in the Shandong peninsula with those in northern and southern Korea peninsula.

  • PDF

A Paleomagnetic Study of Cretaceous Rocks from the Euiseong Area (의성지역에 분포하는 백악기 지층에 대한 고지자기 연구)

  • Doh, Seong-Jae;Kim, Kwang-Ho
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.263-279
    • /
    • 1994
  • Paleomagnetic and rock-magnetic data of Cretaceous sedimentary and volcanic rocks from the Euiseong area indicate that the stable components of remanence are carried by single and pseudo-single domain magnetite, with the exception of the Shinyangdong Formation which has been remagnetized. The Hayang Group, except for the remagnetized Shinyangdong Formation, yields the mean characteristic direction of $D/I=22.5^{\circ}/57.2^{\circ}$ (${\alpha}_{95}=4.6^{\circ}$, N=14 sites) and the pole position is $72.0^{\circ}N$, $206.4^{\circ}E$ ($dp/dm=4.9^{\circ}/6.7^{\circ}$). The Yucheon Group shows two polarities and the mean characteristic direction of $D/I=351.2^{\circ}/60.5^{\circ}$ (${\alpha}_{95}=11.2^{\circ}$, N= 19 sites) and the pole position is $81.3^{\circ}N$, $79.0^{\circ}E$ ($dp/dm=13.0^{\circ}/17.0^{\circ}$). The mean directions of both the Hayang and the Yucheon Groups are supported by the McElhinny's fold test at the 99% confidence level and that of the Yucheon Group by a reversal test at the 95% confidence level. A magnetostratigraphic correlation between polarities of the study formations and the Geomagnetic Time Scale indicates that the Hayang Group can be correlated to the Cretaceous Long Normal Superchron (CLNS), and the Yucheon Group to the boundary between the CLNS and the Polarity Chron 33R or later boundaries between normal and reverse polarities. Comparison of the paleopoles from this study with those from the surrounding areas both within the Gyeongsang basin and in the northeastern Asia indicates that the study area was not undergone significant tectonic rotations with respect to the other parts of the Gyeongsang basin and that the Korean Peninsula was the part of the single terrane of the northeastern Asia at least since the CLNS. The Yucheon Group can be divided into four sub-groups based on the paleomagnetic data, suggesting that there were at least four times of volcanic activities in the study area.

  • PDF

Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale

  • Du, Chengbin;Jiang, Shouyan;Qin, Wu;Xu, Hairong;Lei, Dong
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.135-147
    • /
    • 2012
  • At mesoscale, concrete is considered as a three-phase composite material consisting of the aggregate particles, the cement matrix and the interfacial transition zone (ITZ). The reconstruction of the internal structures for concrete composites requires the identification of the boundary of the aggregate particles and the cement matrix using digital imaging technology followed by post-processing through MATLAB. A parameter study covers the subsection transformation, median filter, and open and close operation of the digital image sample to obtain the optimal parameter for performing the image processing technology. The subsection transformation is performed using a grey histogram of the digital image samples with a threshold value of [120, 210] followed by median filtering with a $16{\times}16$ square module based on the dimensions of the aggregate particles and their internal impurity. We then select a "disk" tectonic structure with a specific radius, which performs open and close operations on the images. The edges of the aggregate particles (similar to the original digital images) are obtained using the canny edge detection method. The finite element model at mesoscale can be established using the proposed image processing technology. The location of the crack determined through the numerical method is identical to the experimental result, and the load-displacement curve determined through the numerical method is in close agreement with the experimental results. Comparisons of the numerical and experimental results show that the proposed image processing technology is highly effective in reconstructing the internal structures of concrete composites.