• Title/Summary/Keyword: technology frontier

Search Result 300, Processing Time 0.026 seconds

Productivity Obstacle Factors Analysis For The Overseas Chemical Plant Utilizing The Revised IPA (수정 IPA를 활용한 해외 화공플랜트 생산성 저해요인 분석)

  • Jeon, Woo-Geun;Lee, Suk-Won;Kim, Jae-Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.17-26
    • /
    • 2017
  • The total amount of overseas plant orders obtained by Korean construction companies in 2015 decreased by approximately 51% from the previous year. While a chemical plant sector has the highest portion of the plant orders by accounting for 63% of the plant industry, its orders also decreased by approximately 43% in the same year. Recently, plant construction companies in overseas projects have been dominating the engineering sector owing to their advanced technology, experience, and accumulated knowledge. Therefore, measures must be taken to secure the competitiveness of domestic companies in the global plant industry. Especially, productivity management is an important issue to strengthen the national competitiveness with the development of construction technology. As the productivity influences long term growth, we analyze productivity obstacle factors by using the revised IPA, a technique to measure attribute importance and performance. With the identified factors, we suggest improvement plans and measures to enhance productivity of overseas chemical plant projects. This study will help the companies to come up with medium and long term measures by discussing results and implications it provides.

Stability investigation of symmetrically porous advanced composites plates via a novel hyperbolic RPT

  • S.R. Mahmoud;E.I. Ghandourah;A.H. Algarni;M.A. Balubaid;Abdelouahed Tounsi;Abdeldjebbar Tounsi;Fouad Bourada
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.471-483
    • /
    • 2023
  • This paper presents an analytical hyperbolic theory based on the refined shear deformation theory for mechanical stability analysis of the simply supported advanced composites plates (exponentially, sigmoidal and power-law graded) under triangular, trapezoidal and uniform uniaxial and biaxial loading. The developed model ensures the boundary condition of the zero transverse stresses at the top and bottom surfaces without using the correction factor as first order shear deformation theory. The mathematical formulation of displacement contains only four unknowns in which the transverse deflection is divided to shear and bending components. The current study includes the effect of the geometric imperfection of the material. The modeling of the micro-void presence in the structure is based on the both true and apparent density formulas in which the porosity will be dense in the mid-plane and zero in the upper and lower surfaces (free surface) according to a logarithmic function. The analytical solutions of the uniaxial and biaxial critical buckling load are determined by solving the differential equilibrium equations of the system with the help of the Navier's method. The correctness and the effectiveness of the proposed HyRPT is confirmed by comparing the results with those found in the open literature which shows the high performance of this model to predict the stability characteristics of the FG structures employed in various fields. Several parametric analyses are performed to extract the most influenced parameters on the mechanical stability of this type of advanced composites plates.

Shear correction factors of a new exponential functionally graded porous beams

  • Mohammed Sid Ahmed Houari;Aicha Bessaim;Tarek Merzouki;AhmedAmine Daikh;Aman Garg;Abdelouahed Tounsi;Mohamed A. Eltaher;Mohamed-Ouejdi Belarbi
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • This article introduces a novel analytical model for examining the impact of porosity on shear correction factors (SCFs) in functionally graded porous beams (FGPB). The study employs uneven and logarithmic-uneven modified porosity-dependent power-law functions, which are distributed throughout the thickness of the FGP beams. Additionally, a modified exponential-power law function is used to estimate the effective mechanical properties of functionally graded porous beams. The correction factor plays a crucial role in this analysis as it appears as a coefficient in the expression for the transverse shear stress resultant. It compensatesfor the assumption that the shear strain is uniform across the depth of the cross-section. By applying the energy equivalence principle, a general expression for static SCFs in FGPBs is derived. The resulting expression aligns with the findings obtained from Reissner's analysis, particularly when transitioning from the two-dimensional case (plate) to the one-dimensional case (beam). The article presents a convenient algebraic form of the solution and provides new case studies to demonstrate the practicality of the proposed formulation. Numerical results are also presented to illustrate the influence of porosity distribution on SCFs for different types of FGPBs. Furthermore, the article validates the numerical consistency of the mechanical property changesin FG beams without porosity and the SCF by comparing them with available results.

Advancing the Frontier in Alkaline Promoter Performance Evaluation: Exploring Simplified Adoption Methods (알칼리 촉진제 성능 측정의 새로운 전환점: 도입 방식의 단순화를 통한 탐구)

  • Wonjoong Yoon;Jiyeon Lee;Jaehoon Kim
    • Clean Technology
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2024
  • In this study, an alkali metal Na was introduced into iron-based catalysts used in the carbon dioxide-based Fischer-Tropsch process by wet impregnation and physical mixing methods to compare their performance. The as-prepared catalysts were evaluated for reactivity at 3.5 MPa, 330 ℃, feed ratio of H2/CO2 = 3 with a space velocity of 4,000 mL h-1 gcat-1. Comparing the two catalysts, it was found that Na was uniformly distributed throughout the catalyst when wet-impregnated, but Na for physically mixed catalyst was relatively located on the surface of the catalyst. In addition, the wet-impregnated catalyst showed higher liquid hydrocarbon (C5+) yield and lower CO selectivity. In conclusion, the effect of Na distribution in the catalyst on the reaction was identified and can be controlled by the introduction method.

Microstructural and corrosion behavior of D3 tools steel and 440C SS for blade application

  • Nur Maizatul Shima Adzali;Nurul Abidah Mohamad Khapeli;Alina Rahayu Mohamed
    • Advances in materials Research
    • /
    • v.13 no.3
    • /
    • pp.183-194
    • /
    • 2024
  • D3 tools steel and 440C stainless steel (SS) are normally being employed for application such as knife blade and cutting tools. These steels are iron alloys which have high carbon and high chromium content. In this study, lab work focused on the microstructural and corrosion behavior of D3 tools steel and 440C SS after went through heat treatment processes. Heat treatments for both steels were started with normalizing at 1020 ℃, continue with hardening at 1000 ℃followed by oil quenching. Cryogenic treatment was carried out in liquid nitrogen for 24 hours. The addition of cryogenic heat treatment is believed to increase the hardness and corrosion resistance for steels. Both samples were then tempered at two different tempering temperatures, 160 ℃ and 426 ℃. For corrosion test, the samples were immersed in NaCl solution for 30 days to study the corrosion behavior of D3 tool steel and 440C SS after heat treatment. The mechanical properties of these steels have been investigated using Rockwell hardness machine before heat treatment, after heat treatment (before corrosion) and after corrosion test. Microstructure observation of samples was carried out by scanning electron microscopy. The corrosion rate of these steels was calculated after the corrosion test completed. From the results, the highest hardness is observed for D3 tool steel which tempered at 160 ℃(54.1 HRC). In terms of microstructural analysis, primary carbide and pearlite in the as-received samples transform to tempered martensite and cementite after heat treatment process. From this research, for corrosion test, heat treated 440C SS sample tempered with 426 ℃possessed the excellent corrosion resistance with corrosion rate 0.2808 mm/year.

Investigation of Structural and Optical Characteristics of In2Se3 Thin Films Fabricated by Thermal Annealing (열처리로 제조된 In2Se3 박막의 구조 및 광학적 특성 연구)

  • Park, Jae-Hyoug;Kim, Dae-Young;Park, Gwang-Hun;Han, Myung-Soo;Kim, Hyo-Jin;Shin, Jae-Cheol;Ha, Jun-Seok;Kim, Kwang-Bok;Ko, Hang-Ju
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.3
    • /
    • pp.136-141
    • /
    • 2012
  • We report investigation of structural and optical characteristics of $In_2Se_3$ thin films fabricated by thermal annealing process. Indium (In) is deposited on substrates by sputtering methods and $In_2Se_3$ thin films are fabricated by thermal annealing it with selenium vapor. The annealing temperature was changed from $150^{\circ}C$ to $400^{\circ}C$. We observe formation and phase changes of $In_2Se_3$ thin films with increase of annealing temperature. Conglomeration of In is observed at low annealing temperature (${\leq}150^{\circ}C$). $In_2Se_3$ phases are started to form at $200^{\circ}C$ and ${\gamma}-In_2Se_3$ phase form at $350^{\circ}C$. High-quality ${\gamma}-In_2Se_3$ thin film with wurtzite structure is obtained at $400^{\circ}C$ of annealing temperature. Furthermore, we confirm that band gaps of $In_2Se_3$ thin films are increased according to increase of annealing temperature. Optical band gap of high-quality ${\gamma}-In_2Se_3$ is found to be 1.796eV.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

Dry matter and grain production of a near-isogenic line carrying a 'Takanari' (high yielding, Indica) allele for increased leaf inclination angle in rice with the 'Koshihikari' (Japonica) genetic background

  • San, Nan Su;Otsuki, Yosuke;Adachi, Shunsuke;Yamamoto, Toshio;Ueda, Tadamasa;Tanabata, Takanari;Ookawa, Taiichiro;Hirasawa, Tadashi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.32-32
    • /
    • 2017
  • To increase rice production, manipulating plant architecture, especially developing new high-yielding cultivars with erect leaves, is crucial in rice breeding programs. Leaf inclination angle determines the light extinction coefficient (k) of the canopy. Erect leaves increase light penetration into the canopy and enable dense plantings with a high leaf area index, thus increasing biomass production and grain yield. Because of erect leaves, the high-yielding indica rice cultivar 'Takanari' has smaller k during ripening than 'Koshihikari', a japonica cultivar with good eating quality. In our previous study, using chromosome segment substitution lines (CSSLs) derived from a cross between 'Takanari' and 'Koshihikari', we detected seven quantitative trait loci (QTLs) for leaf inclination angle on chromosomes 1 (two QTLs), 2, 3, 4, 7, and 12. In this study, we developed a near-isogenic line (NIL-3) carrying a 'Takanari' allele for increased leaf inclination angle on chromosome 3 in the 'Koshihikari' genetic background. We compared k, dry matter production, and grain yield of NIL-3 with those of 'Koshihikari' in the field from 2013 to 2016. NIL-3 had higher inclination angles of the flag, second, and third leaves at full heading and 3 (- 4) weeks after full heading and smaller k of the canopy at the ripening stage. Biomass at full heading and leaf area index at full heading and at harvest did not significantly differ between NIL-3 and 'Koshihikari'. However, biomass at harvest was significantly greater in NIL-3 than in 'Koshihikari' due to a higher net assimilation rate at the ripening stage. The photosynthetic rates of the flag and third leaves did not differ between NIL-3 and Koshihikari at ripening. Grain yield was higher in NIL-3 than 'Koshihikari'. Higher panicle number per square meter in NIL-3 contributed to the higher grain yield of NIL-3. We conclude that the QTL on chromosome 3 increases dry matter and grain production in rice by increasing leaf inclination angle.

  • PDF

Correlation Analysis between Safety Evaluation Indices and Load Carrying Capacity in Bridges (교량 안전성 평가 지표와 내하율의 상관관계 분석)

  • Kyu San Jung;Dong Woo Seo;Jae Hwan Kim;Kun Soo Kim;Ki Tae Park;Woo Jong Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.27-34
    • /
    • 2023
  • In Korea, safety inspections of bridges are conducted periodically in accordance with law. Bridges are classified according to type, length, etdc., and the content and frequency of safety inspections are different. Bridges safety evaluation is performed on relatively large bridges, and safety evaluation of small bridges, which account for the majority of all bridges, is not mandatory. Therefore, in this study, in order to confirm the safety of small-scale bridges, a correlation analysis study was conducted with the common load carrying rate for each safety evaluation indicator. For this purpose, inspection reports of bridges from local goverments were collected, and the values for each bridges for about 50 indicators in the report were converted into data. By performing cleaning on the collected data and analyzing the correlation with the common load carrying rate, the top indicators related to safety for each bridges type were derived.

A Study on the Efficiency Measurement of Regional Maritime Affairs and Fisheries Office by DEA Method (DEA에 의한 지방해양수산청 효율성 비교 분석에 관한 연구)

  • Lee, Nam-Kyu;Kim, Si-Hwa
    • Journal of Navigation and Port Research
    • /
    • v.32 no.1
    • /
    • pp.73-80
    • /
    • 2008
  • The purpose of this paper is to measure the productive efficiency and competitive strength of Regional Maritime Affairs and Fisheries Office using the DEA. Using EMS(Efficiency Measurement System) which is LP solver, quantifies in one way or another a "distance" to the efficient frontier of the technology. An input oriented measure quantifies the input reduction which is necessary to become efficient holding the output constant. Symmetrically, an output oriented measure quantifies the necessary to become efficient holding the inputs constant. A non-oriented measure quantifies necessary improvements when both inputs and outputs can be improved simultaneously. According to the analysis result of the DEA method, inefficient Regional Maritime Affairs and Fisheries Office should recommend benchmarking reference Regional Maritime Affairs and Fisheries Office in order to enhance the productive efficiency of port administration and a public institution. Besides data on productive efficiency serves as a tool for policy-makers at all levels of activity and is essential for improving the efficiency with which the various systems operate.