• Title/Summary/Keyword: technology absorption capacity

Search Result 267, Processing Time 0.025 seconds

Study of Factors for development of Advanced Media filter for Ballast water Treatment (밸러스트 수 처리용 메디아 필터 개발을 위한 여과특성에 관한 연구)

  • Park, Seon-Jeong;Lim, Jae-Dong;Kim, Dong-Geun;Kim, In-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.499-503
    • /
    • 2008
  • As the conference result of MEPC in IMO, development of ballast water management system corresponding to newly established ballast water management standard (D2 regulation) of shipping is being made an active progress over the whole world. The ballast water management system should treat particular material of more than $10{\mu}m$ in high capacity of more than 500t per hour in the event of filtration process. Also, it is very difficult to develop a practical management system since a limited element which a narrow space of the ship should be designed in the minimal volume is assumed. Therefore, the study promoted a study on the next generation auto back wash media filter to overcome such a limited element. Also, the study performed pressure and flux measurement test followed by thickness of each filter medium for filtration by each size to grasp a relation between absorption and pressure at the time of vacuum filtration and mechanical analysis and turbidity change observation of filtered water after vacuum filtration.

ESG management should consider environmental sustainability (환경 측면의 고려가 절실하게 요구되는 ESG 경영)

  • Chang Seok Lee
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.248-256
    • /
    • 2023
  • ESG, which stands for Environmental, Social, and Governance, becomes a keyword in managing a company as it becomes an "indicator" that judge companies. Since the environment has suffered so much damage for economic development, it is now to reflect the enormous environmental costs of the future in the management standard rather than the immediate financial benefits at the expense of the environment. Compared to the days when corporate social responsibility (CSR) was discussed, ESG management has improved significantly as it requires practice beyond the declarative level, but the level of consideration for the environmental field is still not high. There may be many backgrounds, but the biggest problem may be the lack of understanding for other fields. Accordingly, this study aims to inform corporates of the need for investment in the environmental field by explaining ESG reviewed in the environmental field and ESG management required in the environmental field. Furthermore, another purpose is to inform them that ESG management is a win-win strategy that can have a meaningful effect not only in the environmental field where investment is received but also in terms of companies by explaining the benefits that companies can gain through this. To reach this goal, this study proposed a method of restoring a damaged ecosystem based on corporate investment, evaluating its effects based on carbon absorption capacity, and using it as a means of carbon neutrality practice as well as ESG management performance of a company.

Experimental and numerical study on the structural behavior of Multi-Cell Beams reinforced with metallic and non-metallic materials

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ahmed K. Fadel;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.611-633
    • /
    • 2024
  • This study intends to investigate the response of multi-cell (MC) beams to flexural loads in which the primary reinforcement is composed of both metallic and non-metallic materials. "Multi-cell" describes beam sections with multiple longitudinal voids separated by thin webs. Seven reinforced concrete MC beams measuring 300×200×1800 mm were tested under flexural loadings until failure. Two series of beams are formed, depending on the type of main reinforcement that is being used. A control RC beam with no openings and six MC beams are found in these two series. Series one and two are reinforced with metallic and non-metallic main reinforcement, respectively, in order to maintain a constant reinforcement ratio. The first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were among the structural parameters of the beams under investigation that were documented. The primary variables that vary are the kind of reinforcing materials that are utilized, as well as the kind and quantity of mesh layers. The outcomes of this study that looked at the experimental and numerical performance of ferrocement reinforced concrete MC beams are presented in this article. Nonlinear finite element analysis (NLFEA) was performed with ANSYS-16.0 software to demonstrate the behavior of composite MC beams with holes. A parametric study is also carried out to investigate the factors, such as opening size, that can most strongly affect the mechanical behavior of the suggested model. The experimental and numerical results obtained demonstrate that the FE simulations generated an acceptable degree of experimental value estimation. It's also important to demonstrate that, when compared to the control beam, the MC beam reinforced with geogrid mesh (MCGB) decreases its strength capacity by a maximum of 73.33%. In contrast, the minimum strength reduction value of 16.71% is observed in the MC beams reinforced with carbon reinforcing bars (MCCR). The findings of the experiments on MC beams with openings demonstrate that the presence of openings has a significant impact on the behavior of the beams, as there is a decrease in both the ultimate load and maximum deflection.

Changes of Physical Characteristics of Cooked Rice by Pressure Cooking (가압취반시(加壓炊飯時) 미반(米飯)의 물성변화(物性變化)에 관(關)한 연구(硏究))

  • Kim, Dong Woo;Chang, Kyu Seob
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.1
    • /
    • pp.97-107
    • /
    • 1981
  • This study was carried out in order to provide the basic data necessary to develop the effective and desirable cooking method on large scale for investigating the physical characteristics of cooked rices and studying optimum cooking conditions by pressure in kettle cooking rices. Milyang-15, local Japonica type and Milyang-23, high yielding Indica type major varieties cultivated in Korea were used as cooking sample after polishing 70% and 90% respectively, and the results obtained are summarized as follows. 1. The average moisture content of cooked rice by open kettle and pressure kettle method in typical households were 65.17% and 64.52%, respectively. 2. In water absorption capacity of rice grain Milyang-23 was 4.5% higher than Milyang-15, and maximum water content after absorption in Milyang-23 was 29.14%. 3. The expansion volume of cooked rice was changed proportionally by water absorption, heating temperature and time, and maximum expansion volume of cooked rice was 3.2 times greater than rice grain. 4. The gelatinization degree of cooked rice intensively concerning in hardness of rice grain was increased as water-to-rice ratio, heating temperature and time increased, and it was 0.44 in Milyang-23 and 0.64 in Milyang-15 under the optimum cooking conditions as 160% water-to-rice ratio, $0.2kg/cm^2$ cooking pressure and 25 minutes cooking time. 5. The hardness of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 2.35kg/wt in 90% polished Milyang-23 and 2.0kg/wt in 90 polished Milyang-15 under optimum cooking conditions. For maintaining the same level of hardness of cooking rice Milyang-23 required 25% much more water than Milyang-15. 6. The elasticity of cooked rice was changed proportionally by water-to-rice ratio, heating temperature and time, and it appeared 19.2mm and 15.7mm in 90% polished Milyang-15 and Milyang-23 respectively. 7. The gumminess of cooked rice was decreased as water-to-rice ratio, heating temperature and time increased, and it showed 60 and 73 in 90% polished Milyang-23 and Milyang-15, respectively. 8. The optimum cooking time on differerent pressure in kettle took 25 minutes at $0.2kg/cm^2$, 20 minutes at $0.4kg/cm^2$, 15 minutes at $0.6kg/cm^2$, and 10 minutes at $0.8kg/cm^2$.

  • PDF

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Carbon Budget in Campus of the National Institute of Ecology (국립생태원 캠퍼스 내 주요 식생의 탄소수지)

  • Kim, Gyung Soon;Lim, Yun Kyung;An, Ji Hong;Lee, Jae Seok;Lee, Chang Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.167-175
    • /
    • 2014
  • This study was conducted to quantify a carbon budget of major vegetation types established in the campus of the National Institute of Ecology (NIE). Carbon budget was measured for Pinus thunbergii and Castanea crenata stands as the existing vegetation. Net Primary Productivity (NPP) was determined by applying allometric method and soil respiration was measured by EGM-4. Heterotrophic respiration was calculated as 55% of total respiration based on the existing results. Net Ecosystem Production (NEP) was determined by the difference between NPP and heterotrophic respiration (HR). NPPs of P. thunbergii and C. crenata stands were shown in $4.9ton\;C\;ha^{-1}yr^{-1}$ and $5.3ton\;C\;ha^{-1}yr^{-1}$, respectively. Heterotrophic respirations of P. thunbergii and C. crenata stands were shown in $2.4ton\;C\;ha^{-1}yr^{-1}$ and $3.5ton\;C\;ha^{-1}yr^{-1}$, respectively. NEPs of P. thunbergii and C. crenata stands were shown in $2.5ton\;C\;ha^{-1}yr^{-1}$ and $1.8ton\;C\;ha^{-1}yr^{-1}$, respectively. Carbon absorption capacity for the whole set of vegetation types established in the NIE was estimated by applying NEP indices obtained from current study and extrapolating NEP indices from existing studies. The value was shown in $147.6ton\;C\;ha^{-1}yr^{-1}$ and it was calculated as $541.2ton\;CO_2ha^{-1}yr^{-1}$ converted into $CO_2$. This function corresponds to 62% of carbon emission from energy that NIE uses for operation of various facilities including the glass domes known in Ecorium. This carbon offset capacity corresponds to about five times of them of the whole national territory of Korea and the representative rural area, Seocheongun. Considered the fact that ongoing climate change was originated from imbalance of carbon budget at the global level, it is expected that evaluation on carbon budget in the spatial dimension reflected land use pattern could provide us baseline information being required to solve fundamentally climate change problem.

Effect of Application Time and Rate of Mixed Expeller Cake on Soil Environment and Rice Quality (혼합유박 시용량 및 시용시기가 토양환경과 미질에 미치는 영향)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Kim, Byeong-Su;Park, Woo-Kyun;Kim, Jae-Duk;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.103-111
    • /
    • 2008
  • This study was carried out to investigate the optimal application rate and time of mixed expeller cake (MEC) for the replacement of chemical fertilizer. Dongjin-1, as cultivated rice was used at Fluvio-marine deposit in Honam plain paddy field. Soil chemical properties were improved by the application of MEC. Contents of total nitrogen and organic matter were higher in 70%, 100% plots of basal dressing than standard fertilizer application (SFA) plot. Cation exchangeable capacity was highly increased in 70% plot of basal dressing. Also, the content of organic matter in soil was increased with MEC application. Cation exchangeable capacity, total nitrogen and available phosphate were decreased according to late application time. The content of inorganic nitrogen in soil showed high tendency at more application rate of MEC, and nitrogen mineralization at harvest season have finished in 50%, 70% plots of basal dressing. The content of inorganic nitrogen in soil was increased according to late application time, however it was decreased in the late period of growth. Leaf color value became darker with increased application rate of MEC. Leaf color was dark green in MEC application plots at panicle formation stage, on the other hand, it was light green in 50%, 70% plots of basal dressing at heading stage. SPAD reading value of leaf-color was high during the whole growth stage in MEC application plots. More application rate of MEC showed higher tendency of fertilizer nitrogen absorption. Nitrogen use efficiency was the highest in 70% plot of basal dressing. Absorbed amount of fertilized nitrogen was increased in 10~15days before transplanting and nitrogen use efficiency was high according to the late application time. The ratio of perfect kernel and the content of protein on hulled rice showed high tendency at the less application rate of MEC. The ratio of head rice on milled rice showed high tendency at the less application rate of MEC. Rice yield increased 4% in 100% and 70% plots of basal dressing compare with SFA ($5.18Mg\;ha^{-1}$) plot respectively. Ear and culm length of rice were long according to the late application time, while the numbers of spikelet and ear were increased and the percentage of ripened grain was decreased. Rice yield was increased 2~5% in all MEC application plots compared to SFA plot and especially, increased 10~15days before transplanting in application plots. The optimal application rate and time of MEC on normal paddy field in plain were concluded that 70% basal dressing and 10~15days before transplanting

Evaluation of Growth Characteristics and Heavy Metal Absorption Capacity of Festuca ovina var. coreana in Heavy Metal-Treated Soils (중금속 처리한 토양에서 참김의털의 생육특성과 중금속 흡수능력 평가)

  • Keum Chul, Yang
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.259-268
    • /
    • 2022
  • In this study, seeds of Festuca ovina var. coreana growing in waste coal landfills exposed to heavy metal contamination for a long time were collected, and growth characteristics and heavy metal accumulation capacity were evaluated through greenhouse cultivation experiments with germinated seedlings, and was conducted for the applicability of phytoremediation technology. Concentration gradients of arsenic-treated artificial soil were 25, 62.5, 125, and 250 mg/kg, respectively, lead concentrations were 200, 500, 1000, and 2000 mg/kg, and cadmium concentrations were 15, 30, 60, and 100 mg/kg, respectively In the arsenic, lead, and cadmium-treated experimental groups, the number of leaves of F. ovina var. coreana decreased in all compared to the control group except for the lead-treated groups (200, 500, and 1000 mg/kg). Length growth of the shoot part was increased in all of the arsenic treatment groups compared to the control group, but decreased in all of the root parts. In the 1000 and 2000 mg/kg lead treatment groups, lengths increased compared to the control group, but in the other treatments, they were shorter than the control group. In the case of the cadmium treatment group, all of the shoot parts were increased compared to the control group, and all of the root parts were decreased. In the case of arsenic treatment, the biomass was decreased at all parts and all concentrations compared to the control group. The 200, 500, and 1000 mg/kg lead treatments showed larger biomass than the control group in both shoot and root parts. In the cadmium treatment group, the biomass of both shoot and root parts decreased compared to the control group. As the concentration of heavy metal treatment increased, both the number of leaves and the biomass by plant parts tended to decrease, and the length growth of the shoot part tended to increase slightly, but the root part tended to decrease slightly. The arsenic accumulation concentrations of the shoot and root parts of the 62.5 mg/kg arsenic treatment area were 9.4 mg/kg and 253.3 mg/kg, respectively. While the shoot part of the 250 mg/kg arsenic treatment area withered away, the arsenic accumulation concentration in the root part was analyzed to be 859.1 mg/kg, In the 2,000 mg/kg lead treatment area, the shoot and root parts accumulated 10,308.1 and 11,012.0 mg/kg, which were 1.1 times higher than the root parts. At 100 mg/kg cadmium treatment, the shoot and root parts were 176.0 and 287.2 mg/kg, and the root part accumulated 1.6 times higher than the shoot part. As a result of tolerance evaluation of F. ovina var. coreana, multi-tolerance to three heavy metals was confirmed by maintaining growth without dying in all treatment groups of arsenic, lead, and cadmium. Plant extraction (phytoextraction) of F. ovina var. coreana was verified as a species that can be applied up to 2,000 mg/kg of soil lead contamination.

Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning (위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가)

  • Minju Kim;Jeong U Park;Juhyeon Park;Jisoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.481-493
    • /
    • 2023
  • In high-density urban areas, the urban heat island effect increases urban temperatures, leading to negative impacts such as worsened air pollution, increased cooling energy consumption, and increased greenhouse gas emissions. In urban environments where it is difficult to secure additional green spaces, rooftop greening is an efficient greenhouse gas reduction strategy. In this study, we not only analyzed the current status of the urban heat island effect but also utilized high-resolution satellite data and spatial information to estimate the available rooftop greening area within the study area. We evaluated the mitigation effect of the urban heat island phenomenon and carbon sequestration capacity through temperature predictions resulting from rooftop greening. To achieve this, we utilized WorldView-2 satellite data to classify land cover in the urban heat island areas of Busan city. We developed a prediction model for temperature changes before and after rooftop greening using machine learning techniques. To assess the degree of urban heat island mitigation due to changes in rooftop greening areas, we constructed a temperature change prediction model with temperature as the dependent variable using the random forest technique. In this process, we built a multiple regression model to derive high-resolution land surface temperatures for training data using Google Earth Engine, combining Landsat-8 and Sentinel-2 satellite data. Additionally, we evaluated carbon sequestration based on rooftop greening areas using a carbon absorption capacity per plant. The results of this study suggest that the developed satellite-based urban heat island assessment and temperature change prediction technology using Random Forest models can be applied to urban heat island-vulnerable areas with potential for expansion.

Major plant nutrient-releasing patterns in the leachates from the soil incorporated rice hull biochar adjusted pH with dry fish powder (산도를 조절한 왕겨 바이오차와 어분 혼합물을 처리한 토양 침출수의 양분용출 패턴)

  • Jae-Lee Choi;DongKeon Lee;MinJeong Kim;JooHee Nam;ChangKi Shim;SeungGil Hong;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.55-64
    • /
    • 2023
  • This batch experiment was conducted to investigate the patterns of major plant nutrients in the leachates from the soil that was incorporated with rice hull biochar adjusted pH with dry fish powder utilizing rice hull biochar for loading the soil microorganisms. The rice hull biochar adjusted pH between 6.0 and 7.0, and the mixture ratio of rice hull biochar and dry fish powder was 4:6. The treatments consisted of three; the soil incorporated with rice hull biochar non-adjusted pH with dry fish powder as control (RB + DF), the soil incorporated with rice hull biochar adjusted pH by pyroligneous acid solution and dry fish powder (RBP+DF), and the soil incorporated with rice hull biochar adjusted pH by citric acid solution and dry fish powder (RBC+DF). NH4-N, NO3-N, PO4-P, and K concentrations in the leachates were analyzed during incubation. The accumulated NH4-N and PO4-P concentrations in the leachates from the RBC+DF treatment were the highest during leaching periods. The highest accumulated NO3-N and K concentrations in the leachates from the RBP+DF treatment were observed. It observed that NH4-N and PO4-P were more released in the adjusted citric acid solution, but NO3-N and K were less released than those in the pyroligneous acid solution due to their low absorption capacity. Furthermore, it is necessary to investigate crop growth responses to the soil incorporated with adjusted pH rice hull biochar and dry fish powder for loading soil microorganisms.