• Title/Summary/Keyword: tbm

Search Result 581, Processing Time 0.03 seconds

ITER 블랑켓 시험모듈(TBM)의 액체형 증식재 성능 시험용 루프 설계 및 제작

  • Yun, Jae-Seong;Lee, Dong-Won;Bae, Yeong-Deok;Kim, Seok-Gwon;Hong, Bong-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.281-281
    • /
    • 2010
  • ITER 블랑켓 시험모듈(TBM)의 액체형 증식재 성능 시험용 루프의 설계를 완료하였고 현재시험용 루프를 제작 및 설치중이다. 액체형 증식재 성능 시험용 루프의 핵심 구성 부품인 액체 저장용 탱크, 전자석, EM 펌프들과 이들 장치들의 전원장치 및 제어장치를 제작 완료하였다. 액체형 증식재 성능 시험용 루프 설치를 위한 데크를 제작하였으며, 제작된 실험 데크의 총 지지하중은 10 톤 이상이다. 루프설치대 위에 성능 시험용 루프가 설치되며 루프 설치대는 $3\;m\;{\times}\;2.4\;m$ 의 직사각형으로 제작되었으며, 실험 종료 및 유지 보수 시 액체증식재의 drain을 고려하여 전체 루프는 각도 조절이 가능하도록 제작되었다. 루프내의 유량을 측정하기 위한 유량계, 전자석 자장의 변화에 따른 압력의 변화를 측정하기 위한 차압센서가 전자석의 양단에 설치되며, 시험용 루프에 흐르는 액체금속(PbLi) 및 루프관의 온도를 측정하기 위한 열전대가 설치된다. 루프 설치대를 기울였을 때 루프의 최상부에 액체금속 저장고 및 레벨센서를 설치하여 루프 내에 액체금속이 가득 채워졌는지를 레벨센서로 확인하며 루프 내에 잔존하는 기체가 저장고를 통하여 외부로 배출되게 하였다. 액체형 증식재 성능 시험용 루프 설치 후 실험은 고체 상태의 PbLi를 액체 저장용 탱크에 장착한 후 탱크의 열선의 온도 제어에 의한 PbLi의 용융점 확인, 시험용 루프에서의 전자펌프 성능 평가 등의 시험의 기본적인 실험을 수행한 후 자기장 환경에서 MHD 평가, 증식재의 순도 유지, 구조재의 부식 등의 시험을 수행할 예정이다.

  • PDF

EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements

  • Rezaei, Amir H.;Shirzehhagh, Mojtaba;Golpasand, Mohammad R. Baghban
    • Geomechanics and Engineering
    • /
    • v.19 no.2
    • /
    • pp.153-165
    • /
    • 2019
  • A case study of monitoring and analysis of surface settlement induced by tunneling of Tabriz metro line 2 (TML2) is presented in this paper. The TML2 single tunnel has been excavated using earth pressure balanced TBM with a cutting-wheel diameter of 9.49 m since 2015. Presented measurements of surface settlements, were collected during the construction of western part of the project (between west depot and S02 station) where the tunnel was being excavated in sand and silt, below the water table and at an average axis depth of about 16 m. Settlement readings were back-analyzed using Gaussian formula, both in longitudinal and transversal directions, in order to estimate volume loss and settlement trough width factor. In addition to settlements, face support and tail grouting pressures were monitored, providing a comprehensive description of the EPB performance. Using the gap model, volume loss prediction was carried out. Also, COB empirical method for determination of the face pressure was employed in order to compare with field monitored data. Likewise, FE simulation was used in various sections employing the code Simulia ABAQUS, to investigate the efficiency of numerical modelling for the estimating of the tunneling induced-surface settlements under such a geotechnical condition. In this regard, the main aspects of a mechanized excavation were simulated. For the studied sections, numerical simulation is not capable of reproducing the high values of in-situ-measured surface settlements, applying Mohr-Coulomb constitutive law for soil. Based on results, for the mentioned case study, the range of estimated volume loss mostly varies from 0.2% to 0.7%, having an average value of 0.45%.

Study on Asymmetric Settlement Trough induced by the 2nd Tunneling of Twin Shield Tunnels in Clay (점토지반 병설쉴드터널에서 후행터널 굴착에 의한 비대칭 침하형상 연구)

  • Ahn, Chang-Yoon;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.55-63
    • /
    • 2021
  • The construction of shield tunnels is being expanded from the small-bore tunnels such as power, telecommunications, water supply, and sewerage pipes to the large bore tunnels such as road and railway tunnels with the advancement of the shield TBM (Tunnel Boring Machine) manufacturing technology. Accordingly, the construction of twin shield tunnels is increasing. Peck (1969) reported that the surface settlement trough is well described by a Gaussian distribution on a single shield tunnel. Hereafter, many studies about the surface settlement trough were performed by the field measurement, laboratory model test, and numerical analysis. This study confirmed that the additional surface settlement trough induced by the 2nd tunneling were well described by using each Gaussian curve for the right and left sides of the settlement trough.

Study on key safety hazards and risk assessments for small section utility tunnel in urban areas (도심지 소단면 터널식 공동구의 핵심 안전 위험요소 및 위험성 평가 연구)

  • Seong, Joo-Hyun;Jung, Min-Hyung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.931-946
    • /
    • 2018
  • In line with the increased usability of utility pipe conduits in urban areas, construction and R&D activities of utility tunnel, incorporated with the shield TBM method, are actively under way. The utility tunnels are installed through underground excavation, and thus are relatively weak in terms of construction safety. However, hazards associated with the utility tunnel construction have not been properly identified, despite the introduction of a policy to the 'Design for Safety' for the purpose of reducing accident rates in the construction industry. Therefore, in this study, following the derivation of hazards associated with utility tunnel, these hazards were then used as the basis to uncover key safety hazards requiring extensive management in a field, which were then used to conduct a risk assessment having applied the matrix method so that the results can be utilized in risk assessment during the stages of utility tunnel planning, design, and construction, while also serving as a data reference.

Current Status of Rock Cutting Technique Using Undercutting Concept (언더커팅 개념을 적용한 암반절삭기술의 현황 분석)

  • Jeong, Hoyoung;Choi, Seungbeom;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.148-156
    • /
    • 2019
  • In urban area, the use of mechanical excavators (e.g., TBM and roadheader) has been increasing in construction of tunnelling and underground space. The undercutting technology, which is modified from the conventional rock-cutting concept, has been developed by advanced countries. Therefore, research on the latest technology of mechanical excavation is required, and keeping carrying out research on conventional mechanical tunneling methods at the same time. In this study, as a fundamental study of the undercutting technique, the principle and concept of the undercutting were introduced, as well as the current status of the research of advanced countries. The undercutting is applicable as a full-face excavation method for the tunnels and underground spaces, as well as an auxiliary(partial-face excavation) method for extension of the existing tunnels.

Assessment of rock cutting efficiency of an actuated undercutting disc (구동형 언더커팅 디스크의 절삭효율 평가)

  • Jeong, Hoyoung;Wicaksana, Yudhidya;Kim, Sehun;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.199-209
    • /
    • 2021
  • Alternative methods of rock cutting have been introduced to substitute and to improve the traditional mechanical rock excavation methods (e.g., TBM and roadheader). Undercutting methods have been recently studied in some countries. In undercutting, several additional cutting parameters are involved in its cutting process compared to the traditional rock-cutting. As a fundamental study, this paper introduces the concept of undercutting method with actuated disc, lab-scaled testing system, and testing procedures of undercutting by the system. Also, we present the calculation methods of cutter forces and specific energy, and discuss the results of undercutting tests compared to those of traditional rock-cutting methods.

Risk analysis and countermeasures for subsea tunnel planning of national road 77 construction work between Abhae and Hwawon (압해-화원 간 국도77호선 건설공사 해저터널 계획을 위한 리스크 분석 및 대책방안)

  • Kim, Young-Joon;Kim, Zu-Cheol;Lee, Jae-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.15-38
    • /
    • 2022
  • Recently, tunnel technology in Korea has shown various achievements such as long tunnel and large section by tunnel construction using TBM in Korea and abroad. Especially subsea tunnels are frequently designed and constructed. The Ga-deok subsea tunnel was completed in December 2010, and the Incheon North Port Tunnel was opened and operated in 2017, and the Bo-ryeong subsea tunnel between Dae-cheon Port and Won-san Island will be completed in 2021. In foreign countries, many subsea tunnels have been constructed and operated in such as Norway and Japan. The main technical problem in the construction of subsea tunnel is to secure stability due to high water pressure conditions and large-scale seawater inflow in fault zones and weak zones. In this paper, various risk factors and solutions are described in the subsea tunnel planning of national road 77 construction work between Abhae and Hwawon.

Review of fire resistance evaluation and fire resistance method of concrete segment lining for fire in tunnel (터널 내 화재발생에 대한 콘크리트 세그먼트 라이닝의 내화성 평가 및 내화방법에 대한 고찰)

  • Moorak Son;Juhyun Cheon;Youngkeun Cho;Bumjoo Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.2
    • /
    • pp.121-139
    • /
    • 2023
  • Various tunnels such as road, subway, and railway are under construction and operation. Various types of linings are used for structural stability of tunnel structures, and concrete segment linings are mainly installed in TBM tunnel construction. In this paper, when a fire occurs in a tunnel, the impact on the concrete segment lining, which is the structure in the tunnel, and related standards, fire resistance evaluation and fire resistance method are investigated through literature review and related contents are presented. Through this, it is intended to provide an information for practitioners to secure the safety of concrete segment linings against tunnel fires.

TBM disc cutter ring type adaptability and rock-breaking efficiency: Numerical modeling and case study

  • Xiaokang Shao;Yusheng Jiang;Zongyuan Zhu;Zhiyong Yang;Zhenyong Wang;Jinguo Cheng;Quanwei Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.1
    • /
    • pp.103-113
    • /
    • 2023
  • This study focused on understanding the relationship between the design of a tunnel boring machine disc cutter ring and its rock-breaking efficiency, as well as the applicable conditions of different cutter ring types. The discrete element method was used to establish a numerical model of the rock-breaking process using disc cutters with different ring types to reveal the development of rock damage cracks and variation in cutter penetration load. The calculation results indicate that a sharp-edged (V-shaped) disc cutter penetrates a rock mass to a given depth with the lowest load, resulting in more intermediate cracks and few lateral cracks, which leads to difficulty in crack combination. Furthermore, the poor wear resistance of a conventional V-shaped cutter can lead to an exponential increase in the penetration load after cutter ring wear. In contrast, constant-cross-section (CCS) disc cutters have the highest quantity of crack extensions after penetrating rock, but also require the highest penetration loads. An arch-edged (U-shaped) disc cutter is more moderate than the aforementioned types with sufficient intermediate and lateral crack propagation after cutting into rock under a suitable penetration load. Additionally, we found that the cutter ring wedge angle and edge width heavily influence cutter rock-breaking efficiency and that a disc cutter with a 16 to 22 mm edge width and 20° to 30° wedge angle exhibits high performance. Compared to V-shaped and U-shaped cutters, the CCS cutter is more suitable for soft or medium-strength rocks, where the penetration load is relatively small. Additionally, two typical case studies were selected to verify that replacing a CCS cutter with a U-shaped or optimized V-shaped disc cutter can increase cutting efficiency when encountering hard rocks.

Prediction of TBM disc cutter wear based on field parameters regression analysis

  • Lei She;Yan-long Li;Chao Wang;She-rong Zhang;Sun-wen He;Wen-jie Liu;Min Du;Shi-min Li
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.647-663
    • /
    • 2023
  • The investigation of the disc cutter wear prediction has an important guiding role in TBM equipment selection, project planning, and cost forecasting, especially when tunneling in a long-distance rock formations with high strength and high abrasivity. In this study, a comprehensive database of disc cutter wear data, geological properties, and tunneling parameters is obtained from a 1326 m excavated metro tunnel project in leptynite in Shenzhen, China. The failure forms and wear consumption of disc cutters on site are analyzed with emphasis. The results showed that 81% of disc cutters fail due to uniform wear, and other cutters are replaced owing to abnormal wear, especially flat wear of the cutter rings. In addition, it is found that there is a reasonable direct proportional relationship between the uniform wear rate (WR) and the installation radius (R), and the coefficient depends on geological characteristics and tunneling parameters. Thus, a preliminary prediction formula of the uniform wear rate, based on the installation radius of the cutterhead, was established. The correlation between some important geological properties (KV and UCS) along with some tunneling parameters (Fn and p) and wear rate was discussed using regression analysis methods, and several prediction models for uniform wear rate were developed. Compared with a single variable, the multivariable model shows better prediction ability, and 89% of WR can be accurately estimated. The prediction model has reliability and provides a practical tool for wear prediction of disc cutter under similar hard rock projects with similar geological conditions.