• Title/Summary/Keyword: taste receptors, type 1

Search Result 9, Processing Time 0.024 seconds

Distribution of Taste Receptors in Submandibular and von Ebner Salivary Glands

  • Jun, Yong-Ku;Kim, Se-Nyun;Lee, Cil-Han;Cho, Young-Kyung;Chung, Ki-Myung;Roper, Stephen D.;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.13-23
    • /
    • 2008
  • Taste is a critically important sense for the survival of an organism. However, structure and distribution of taste receptors were only recently investigated. Although expression of the ion channels responsible for the sense of salty taste and acidity was observed in the non-taste cells, receptors for sweet and bitter taste were only identified in taste cells. Salivary glands are involved in the sensing of taste and plays important roles in the transduction of taste. The purpose of this study is to examine whether taste receptors are present in the salivary glands and to provide clues for the investigation of the taste-salivary glands interaction. Using microarray and RT-PCR analyses, the presence of taste receptor mRNAs in the rat von Ebner gland and submandibular gland was confirmed. Type I taste receptors were preferentially expressed in von Ebner gland, whereas type II taste receptors were expressed in both von Ebner gland and submandibular gland. The tastespecific signal tranducing proteins, $G_{\alpha}gustducin$ and phospholipase C ${\beta}2$, were also detected in both salivary glands by immunohistochemistry. Finally, the activation of the calcium signal in response to bitter taste in the acinar cells was also observed. Taken together, these results suggest that taste receptors are present in the von Ebner gland and submandibular gland and that type II taste receptors are functionally active in both salivary glands.

Differential Expression of Taste Receptors in Tongue Papillae of DBA Mouse

  • Choi, Ha-Jung;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.41 no.1
    • /
    • pp.25-32
    • /
    • 2016
  • The tongue has 4 kinds of papillae, which are filiform, fungiform (FU), foliate (FO) and circumvallate papilla (CV). Tongue papillae except filiform papilla include taste buds. The papillae differ in taste sensitivities, likely due to differential expression of taste receptors. In this study, we evaluated differences in the expression levels of taste receptors in FU, FO and CV. Male DBA2 mice, 42-60 days old, were used in the study. Messenger RNAs were extracted from the murine epithelial tissues including FU, FO and CV. Cloned DNAs were synthesized by reverse transcription. Quantitative PCRs (qPCRs) were performed to determine mRNA expression levels of taste receptors. Results of qPCR revealed that the relative expression levels and patterns were different among FU, FO and CV. All three type 1 taste receptors were expressed FU, FO and CV at varying relative expression levels. All 35 kinds of type 2 taste receptors showed higher expression in FO and CV than in FU. Tas2r108 and Tas2r137 showed the two highest expression levels in all tested papillae. The differential expression levels and patterns of taste receptors among the three papillae could contribute to the different physiological sensitivities by tongue areas. Additional studies such as in situ hybridization or taste receptor cell activity recording is necessary to elucidate the functional relationship between expression levels of taste receptors and taste sensitivity.

Expression of Kainate Glutamate Receptors in Type II Cells in Taste Buds of Rats

  • Lee, Sang-Bok;Lee, Cil-Han;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.83-89
    • /
    • 2008
  • Glutamate-induced cobalt uptake reveals non-NMDA glutamate receptors (GluRs) in rat taste bud cells. Previous studies suggest that glutamate-induced cobalt uptake in taste cells occurs mainly via kainate type GluRs. Cobaltstained cells were immunoreactive against GluR6 and KA1 subunits of GluRs. However, the functions of those type of receptors are not known yet. It is important question which types of taste cells are cobalt-stained when stimulated by glutamate and whether they express these kinds of GluRs. Circumvallate and foliate papilla of Sprague-Dawley rats (45-60 days old) were used. A cobalt-staining technique combined with immunohistochemistry against specific markers for taste bud cell types, such as blood group H antigen (BGH), $\alpha$-gustducin (Gus), or neural cell adhesion molecule (NCAM) was employed. We also performed double labeling of GluR6 or KA1 subunits of GluR with each specific marker for taste bud cell types. Lots of cobaltstained taste bud cells expressed Gus-like immunoreactivity, and subsets of the cobalt stained cells appeared NCAM- or BGH-like immunoreactivity. Stimulation with 1 mM glutamate significantly increased the number of cobaltstained cells in Gus-like immunoreactive cells, but not in NCAM- or BGH-like immunoreactive cells. In the double labeling experiments, GluR6 and KA1 subunits of GluRs were mainly expressed with Gus. These results suggest that kainate glutamate receptors preferentially expressed in type II taste bud cells in rat.

Expression of Neurotrophic Factors and Their Receptors in Rat Posterior Taste Bud Cells

  • Park, Dong-Il;Chung, Ki-Myung;Cho, Young-Kyung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.39 no.2
    • /
    • pp.107-114
    • /
    • 2014
  • Taste is an important sense in survival and growth of animals. The growth and maintenance of taste buds, the receptor organs of taste sense, are under the regulation of various neurotrophic factors. But the distribution aspect of neurotrophic factors and their receptors in distinct taste cell types are not clearly known. The present research was designed to characterize mRNA expression pattern of neurotrophic factors and their receptors in distinct type of taste cells. In male 45-60 day-old Sprague-Dawley rats, epithelial tissues with and without circumvallate and folliate papillaes were dissected and homogenized, and mRNA expressions for neurotrophic factors and their receptors were determined by RT-PCR. The mRNA expressions of brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3), receptor tyrosine kinase B (TrkB), exclusion of nerve growth factor (NGF), neurotrophin-4/5 (NT4/5), receptor tyrosine kinase A (TrkA), receptor tyrosine kinase C (TrkC), and p75NGFR were observed in some population of taste cell. In support of this result and to characterize which types of taste cells express NT3, BDNF, or TrkB, we examined mRNA expressions of NT3, BDNF, or TrkB in the $PLC{\beta}2$ (a marker of Type II cell)-and/or SNAP25 (a marker of Type III cell)-positive taste cells by a single taste cell RT-PCR and found that the ratio of positively stained cell numbers were 17.4, 6.5, 84.1, 70.3, and 1.4 % for $PLC{\beta}2$, SNAP25, NT3, BDNF, and TrkB, respectively. In addition, all of $PLC{\beta}2$-and SNAP25-positive taste cells expressed NT3 mRNA, except for one taste bud cell. The ratios of NT3 mRNA expressions were 100% and 91.7% in the SNAP25-and $PLC{\beta}2$-positive taste cells, respectively. However, two TrkB-positive taste cells co-expressed neither $PLC{\beta}2$ nor SNAP 25. The results suggest that the most of type II or type III cells express BDNF and NT3 mRNA, but the expression is shown to be less in type I taste cells.

Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats

  • Lee, Sang-Bok;Lee, Cil-Han;Kim, Se-Nyun;Chung, Ki-Myung;Cho, Young-Kyung;Kim, Kyung-Nyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.455-460
    • /
    • 2009
  • Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, $PLC\beta2$, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

Detection, modulation, and transmission of sweet taste in regulation for energy homeostasis

  • Jyotaki, Masafumi;Ninomiya, Yuzo
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.49-52
    • /
    • 2009
  • Perception of sweet compounds is important for animals to detect external carbohydrate source of calories and plays a crucial role in feeding behavior of animals. Recent progress in molecular genetic studies provides evidence for a candidate receptor (heterodimers with taste receptor type 1 member 2 and 3: T1R2/T1R3), and major downstream transduction molecules required for sweet taste signaling. Several studies demonstrated that the sweet taste signal can be modulated by a satiety hormone, leptin, through its receptors expressed in a subset of sweet-sensitive taste cells. Increase of internal energy storage in the adipose tissue leads to increase in the plasma leptin level which can reduce activities of sweet-sensitive cells. In human, thus, diurnal variation of plasma leptin level parallels variation of taste recognition thresholds for sweet compounds. This leptin modulation of sweet taste sensitivity may influence individuals' preference, ingestive behavior, and absorption of nutrients, thereby plays important roles in regulation of energy homeostasis.

Anti-proliferative Efficacy of Xanthorrhizol on Cancer Cells via Activation of hTAS2R38 among 25 Human Bitter Taste Receptors

  • Yiseul Kim;Hyun-Jin Na;Min Jung Kim
    • Journal of the Korean Society of Food Culture
    • /
    • v.39 no.3
    • /
    • pp.166-172
    • /
    • 2024
  • Human bitter taste-sensing type 2 receptors (hTAS2Rs) are expressed in various human tissues and may be associated with various cell signaling pathways, cell progression, and cell physiology in each tissue. hTAS2Rs can be a potential drug target because it is also expressed in some cancer cells. Xanthorrhizol (XNT) has various biological activities, such as anticancer, antimicrobial, anti-inflammatory, and antioxidant. XNT produces a bitter taste, but the specific hTAS2R activated is unknown, and the hTAS2R-mediated effect of XNT on cancer cells has not been studied. This study discovered the target receptor of XNT among 25 hTAS2Rs and confirmed the possibility of the hTAS2R-mediated inhibition of cancer cell proliferation. XNT activated only one receptor, hTAS2R38 (EC50=1.606±0.021 ㎍/mL), and its activity was inhibited by probenecid, a hTAS2R38 antagonist. When HepG2 and MCF-7 cells were treated with XNT or phenylthiocarbamide (PTC), a known hTAS2R38 agonist, both chemicals inhibited cancer cell proliferation. XNT targets the human bitter taste receptor TAS2R38 and inhibits the proliferation of HepG2 and MCF-7 cells mediated by TAS2R38. This suggests that TAS2R38 may be a new target for disease treatment and a potential new factor for drug development.

An Expression Levels Analysis of the Bitter Taste Receptors in the Murine Exocrine Glands

  • Ki, Su-Young;Cho, Young-Kyung;Chung, Ki-Myung;Kim, Kyung-Nyun
    • International Journal of Oral Biology
    • /
    • v.43 no.1
    • /
    • pp.5-11
    • /
    • 2018
  • Recent findings indicate that Type 2 taste receptors (T2Rs) are expressed outside the gustatory system, including in the gastrointestinal tracts and the exocrine glands, such as the submandibular (SM), parotid (P), lacrimal (L) glands and pancreas (PC). Specifically, T2Rs are found in some of the gastrointestinal endocrine cells, and these cells secreted peptide hormones in response to stimulation by bitter-tasting compounds. The results show that T2Rs may have significant physiological roles besides bitter taste reception. The functions of the T2Rs in the exocrine glands remain poorly understood. An expression levels analysis of T2Rs will help to determine those functions in the exocrine glands. The expression levels of the T2Rs in the exocrine glands were discovered via the qPCR. C57BL/6J mice of 42~60-day-old were used. Messenger RNAs were extracted from S, P, L and PC. Cloned DNAs were synthesized by reverse transcription. Quantitative PCRs were performed using the SYBR Green method. The expression levels of the T2Rs were calculated as relative expression levels to that of the GAPDH. The statistical significance among the observed exocrine glands was tested using the variance analysis (ANOVA test). Tas2r108, out of murine 35 T2Rs, was the most highly expressed in every observed exocrine gland. This finding was similar to previous results from tongue papillae, but the expression levels were lower than those of the tongue papillae. Tas2r137 of SM, P, L and PC were expressed a little lower than that of tongue papillae. The T2Rs in the exocrine glands may play slightly different roles from those in the tongue. We suggest that physiological studies such as a patch clamp and functional $Ca^{2+}$ imaging of acinar cells are necessary for understanding the Tas2r108 functions.

Umami taste receptor suppresses cancer cachexia by regulating skeletal muscle atrophy in vivo and in vitro

  • Sumin Lee;Yoonha Choi;Yerin Kim;Yeon Kyung Cha;Tai Hyun Park;Yuri Kim
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.451-463
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: The umami taste receptor (TAS1R1/TAS1R3) is endogenously expressed in skeletal muscle and is involved in myogenesis; however, there is a lack of evidence about whether the expression of the umami taste receptor is involved in muscular diseases. This study aimed to elucidate the effects of the umami taste receptor and its mechanism on muscle wasting in cancer cachexia using in vivo and in vitro models. MATERIALS/METHODS: The Lewis lung carcinoma-induced cancer cachexia model was used in vivo and in vitro, and the expressions of umami taste receptor and muscle atrophy-related markers, muscle atrophy F-box protein, and muscle RING-finger protein-1 were analyzed. RESULTS: Results showed that TAS1R1 was significantly downregulated in vivo and in vitro under the muscle wasting condition. Moreover, overexpression of TAS1R1 in vitro in the human primary cell model protected the cells from muscle atrophy, and knockdown of TAS1R1 using siRNA exacerbated muscle atrophy. CONCLUSION: Taken together, the umami taste receptor exerts protective effects on muscle-wasting conditions by restoring dysregulated muscle atrophy in cancer cachexia. In conclusion, this result provided evidence that the umami taste receptor exerts a therapeutic anti-cancer cachexia effect by restoring muscle atrophy.