DOI QR코드

DOI QR Code

Differential Expression of Taste Receptors in Tongue Papillae of DBA Mouse

  • Choi, Ha-Jung (Department of Physiology and Neuroscience, college of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Young-Kyung (Department of Physiology and Neuroscience, college of Dentistry, Gangneung-Wonju National University) ;
  • Chung, Ki-Myung (Department of Physiology and Neuroscience, college of Dentistry, Gangneung-Wonju National University) ;
  • Kim, Kyung-Nyun (Department of Physiology and Neuroscience, college of Dentistry, Gangneung-Wonju National University)
  • Received : 2016.02.02
  • Accepted : 2016.03.07
  • Published : 2016.03.31

Abstract

The tongue has 4 kinds of papillae, which are filiform, fungiform (FU), foliate (FO) and circumvallate papilla (CV). Tongue papillae except filiform papilla include taste buds. The papillae differ in taste sensitivities, likely due to differential expression of taste receptors. In this study, we evaluated differences in the expression levels of taste receptors in FU, FO and CV. Male DBA2 mice, 42-60 days old, were used in the study. Messenger RNAs were extracted from the murine epithelial tissues including FU, FO and CV. Cloned DNAs were synthesized by reverse transcription. Quantitative PCRs (qPCRs) were performed to determine mRNA expression levels of taste receptors. Results of qPCR revealed that the relative expression levels and patterns were different among FU, FO and CV. All three type 1 taste receptors were expressed FU, FO and CV at varying relative expression levels. All 35 kinds of type 2 taste receptors showed higher expression in FO and CV than in FU. Tas2r108 and Tas2r137 showed the two highest expression levels in all tested papillae. The differential expression levels and patterns of taste receptors among the three papillae could contribute to the different physiological sensitivities by tongue areas. Additional studies such as in situ hybridization or taste receptor cell activity recording is necessary to elucidate the functional relationship between expression levels of taste receptors and taste sensitivity.

Keywords

References

  1. Scott K. Chemical senses: taste and olfaction. In: Squire LR, Berg D, Bloom FE, du-Lac S, Ghosh A, Spitzer NC, editors. Fundamental neuroscience. Oxford: Elsevier Inc; 2012. pp. 513-530
  2. Royer SM, Kinnamon JC. Ultrastructure of mouse foliate taste buds: Synaptic and nonsynaptic interactions between taste cells and nerve fibers. J Comp Neurol. 1988;270:11-24. DOI:10.1002/cne.902700103
  3. Lindemann B. Chemoreception: tasting the sweet and the bitter. Current Biol. 1996;6:1234-1237. DOI: 10.1016/S0960-9822(96)00704-X
  4. Murray RG. The mammalian taste bud type III cell: a critical analysis. J Ultrastruct Mol Struct Res. 1986;95:175-188. DOI: 10.1016/0889-1605(86)90039-X
  5. Lawton DM, Furness DN, Lindemann B, Hackney CM. Localization of the glutamate-aspartate transporter, GLAST, in rat taste buds. Eur J Neurosci. 2000;12:3163-3171. DOI: 10.1046/j.1460-9568.2000.00207.x
  6. Dvoryanchikov G, Sinclair MS, Perea-Martinez I, Wang T, Chaudhari N. Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. J Comp Neurol. 2009;517:1-14. DOI: 10.1002/cne.22202
  7. Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloridesensitive channels in type I fungiform taste cells in mouse. BMC Neurosci. 2008;9:1. 10.1186/1471-2202-9-1
  8. Farbman AI, Hellekant G, Nelson A. Structure of taste buds in foliate papillae of the rhesus monkey, Macaca mulatta. Am J Anat. 1985;172:41-56 https://doi.org/10.1002/aja.1001720104
  9. Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell. 2001; 106:381-390. DOI: 10.1016/S0092-8674(01)00451-2
  10. DeFazio RA, Dvoryanchikov G, Maruyama Y, Kim JW, Pereira E, Roper SD, and et al. Separate populations of receptor cells and presynaptic cells in mouse taste buds. J Neurosci. 2006;26:3971-3980. DOI: 10.1523/JNEUROSCI.0515-06.2006
  11. Fujimoto S, Ueda H, Kagawa H. Immunocytochemistry on the localization of 5-hydroxytryptamine in monkey and rabbit taste buds. Acta Anatomica. 1987;128:80-83. DOI: 10.1159/000146320
  12. Chaudhari N, Roper SD. The cell biology of taste. J Cell Biol. 2010;190:285-296. doi: 10.1083/jcb.201003144
  13. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, and et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell. 2003;112:293-301. doi:10.1016/S0092-8674(03)00071-0
  14. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS. Putative mammalian taste receptors: a class of tastespecific GPCRs with distinct topographic selectivity. Cell. 1999;96:541-551. doi:10.1016/S0092-8674(00)80658-3
  15. Nelson G, Chandrashekar J, Hoon MA, Feng L, Zhao G, Ryba NJ, Zuker CS. An amino-acid taste receptor. Nature. 2002;416:199-202. doi:10.1038/nature726
  16. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. Cell. 2000;100:693-702. doi:10.1016/S0092-8674(00)80705-9
  17. Wong GT, Gannon KS, Margolskee RF. Transduction of bitter and sweet taste by gustducin. Nature. 1996;381:796-800. DOI: 10.1038/381796a0
  18. Tizzano M, Cristofoletti M, Sbarbati A, Finger TE. Expression of taste receptors in solitary chemosensory cells of rodent airways. BMC Pulmonary Medicine. 2011;11:3. DOI: 10.1186/1471-2466-11-3
  19. Singh N, Vrontakis M, Parkinson F, Chelikani P. Functional bitter taste receptors are expressed in brain cells. Biochem Biophys Res Commun. 2011;406:146-151. doi:10.1016/j.bbrc.2011.02.016
  20. Kwoen SB. Physiology of Taste Receptors in Exocrine Glands. Ph.D., Gangneung-Wonju National University, Gangneung, Korea, 2012
  21. Nishijima K, Atoji Y. Taste buds and nerve fibers in the rat larynx: an ultrastructural and immunohistochemical study. Arch Histol Cytol. 2004;49:195-209. DOI: 10.1679/aohc.67.195
  22. Boughter JD, Raghow S, Nelson TM, Munger SD. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli. BMC Genet. 2005;6:36. DOI: 10.1186/1471-2156-6-36
  23. Witt M, Reutter K, Miller IJ Jr. Morphology of peripheral taste system. In: Doty RL, editor. Handbook of olfaction and gustation. vol.2. New Jersey: John Wiley&Sons, Inc; 2003. pp. 651-678.
  24. Roll ET, Scott TR. Central taste anatomy and neurophysiology. In: Doty RL, editor. Handbook of olfaction and gustation. vol.2. New Jersey: John Wiley&Sons, Inc; 2003. pp. 679-706
  25. Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc Natl Acad Sci USA. 2002;99:4692-4696. doi: 10.1073/pnas.072090199
  26. V Danilova, G Hellekant. Comparison of the responses of the chorda tympani and glossopharyngeal nerves to taste stimuli in C57BL/6J mice. BMC Neurosci. 2003;4:1. DOI: 10.1186/1471-2202-4-5
  27. Foster SR, Porrello ER, Purdue B, Chan HW, Voigt A, Frenzel S, and et al. Expression, Regulation and putative nutrientsensing function of taste GPCRs in the heart. PLoS ONE. 2013;8:e64579. DOI: 10.1371/journal.pone.0064579
  28. Grassin-Delyle S, Abrial C, Fayad-Kobeissi S, Brollo M, Faisy C, Alvarez JC, and et al. The expression and relaxant effect of bitter taste receptors in human bronchi. Respir Res. 2013;14:134. DOI: 10.1186/1465-9921-14-134
  29. Foster SR, Blank K, See Hoe LE, Behrens M, Meyerhof W, Peart JN, Tomas WG. Bitter taste receptors agonists elicit G-protein-dependent negative inotropy in the murine heart. The FASEB Journal. 2014;28:4497-4508. doi: 10.1096/fj.14-256305