• Title/Summary/Keyword: target parameters

Search Result 1,402, Processing Time 0.03 seconds

Nuclear Design Methodology of Fission Moly Target for Research Reactor

  • Cho, Dong-Keun;Kim, Myung-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.365-374
    • /
    • 1999
  • A nuclear design of fission moly production targets for a research reactor, HANARO was peformed. It was found that the use of MCNP-4A, ORIGEN-2 code was reliable for the analysis of production characteristics of $^{99}$ Mo in a target fuel at an irradiation holes. A parametric study was done for the optimization of target location, target dimension, target shape and fuel materials. It was shown that a fuel thickness was the most sensitive parameters and electro-deposited target gave the highest 99Mo yield ratio. A pellet target with vibro-compaction powder, however, showed the largest production capacity and better engineering feasibility even with less yield ratio. Ten kinds of optimized target design for both LEU and HEU satisfied all the given design constraints. The most favorable design was the HEU ring-shaped electro-deposited target, considered the safety limit, production yield, chemical process easiness, yield ratio, and amount of radioactive waste.

  • PDF

Measuring Acoustical Parameters of English Words by the Position in the Phrases (영어어구의 위치에 따른 단어의 음향 변수 측정)

  • Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.115-128
    • /
    • 2007
  • The purposes of this paper were to develop an automatic script to collect such acoustic parameters as duration, intensity, pitch and the first two formant values of English words produced by two native Canadian speakers either alone or in a two-word phrase at a normal speed and to compare those values by the position in the phrases. A Praat script was proposed to obtain the comparable parameters at evenly divided time point of the target word. Results showed that the total duration of the word in the phrase was shorter than that of the word produced alone. That was attributed to the pronunciation style of the native speakers generally placing the primary word stress in the first word position. Also, the reduction ratio of the male speaker depended on the word position in the phrase while the female speaker didn't. Moreover, there were different contours of intensity and pitch by the position of the target word in the phrase while almost the same formant patterns were observed. Further studies would be desirable to examine those parameters of the words in the authentic speech materials.

  • PDF

Design of an Underwater Target Simulator (수중표적 시뮬레이터설계)

  • 조내현;예윤해;정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2003
  • In this paper, we propose a model that simulates the reflective waveform from underwater objects by means of Doppler effect, highlight and elongation phenomenon. Also, this paper presents a hardware Implementation of simulation model with the input and output parameters. The underwater target simulator consists of transducer, receiver, transmitter and control parts. According to the experimental results of the simulator, it carried out the performances of real target in response to transmission signal.

  • PDF

Radar Echo Signal Simulation Equipment with a Precise Range-velocity Control Capability (정밀 거리-속도 모사 기능을 갖는 레이더 반사 신호 모의장치)

  • Han, Il-Tak;Kim, Jong-Mann;Kim, Wan-Kyu;Lee, Min-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1139-1146
    • /
    • 2010
  • Simulated target generators are used to evaluate the various radar performance. Using the radar parameters such as target range(time delay), doppler frequency, target RCS, simulated target generator can be developed. Especially moving targets are simulated by control time delay and update target signal intensive for target range. Base on this concepts, in this paper, simulated target generators are designed and developed for X-band Radar performance test. Developed equipment is evaluated its performance and then tested with X-band Radar. This paper presents these design, development, and test results of developed target generator.

Effect of sputtering parameters and targets on properties of ZnO:Al thin films prepared by reactive DC magnetron sputtering (직류 반응성 sputtering법으로 제막된 ZnO:Al 박막의 물성에 미치는 증착조건 및 타겟의 영향)

  • 유병석;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.592-598
    • /
    • 1998
  • AZO(Aluminum doped Zinc Oxide) thin films were fabricated by reactive DC magnetron sputtering method using zinc metal target (Al 2%) and zinc oxide target ($Al_2O_3\;2%$) respectively. The intermediate condition with optimum transmittance and conductivity was obtained by controlling the sputtering parameters. Oxygen gas ratio for this condition was $0.5{\times}10^{-2}~1.0{\times}10^{-2}$ in oxide target and. In case of metal target, this optimum oxygen gas ratio at the applied power of 0.6 kW and 1.0 kW was 0.215~0.227 and 0.305~0.315, respectively. The resistivity of AZO film deposited was obtained $1.2~1.4{\times}10^{-3} {\Omega}{\cdot}$cm as deposited state regardless of target species.

  • PDF

Performance Analysis of the Tracking Filter for a Maneuvering Target of Poisson-Type Subject To System Modeling Error (Poisson-Type 기동표적의 시스템 모델링 오류에 대한 추적 필터의 성능 해석)

  • Oh, Sang-Byung;Kim, Sang-Jin;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.2
    • /
    • pp.217-226
    • /
    • 2003
  • Recently Lim has proposed a linear, recursive, unbiased minimum variance filter for a maneuvering target based on the maneuver dynamics modeled as a jump process of Poisson-type. In the proposed filter it was assumed that the state transition parameters of the jump used for target maneuver modeling are a priori known to the filter. However, in most cases they are not known in practice. In this paper, we consider the influence of system (target) modeling error on the performance of the proposed tracking filter arising from the maneuver tracking. For qualitative analysis Monte-Carlo simulations are carried out against employing the maneuver model with different state transition parameters from the actual values.

  • PDF

Robot Target Tracking Method using a Structured Laser Beam (레이저 구조광을 이용한 로봇 목표 추적 방법)

  • Kim, Jong Hyeong;Koh, Kyung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1067-1071
    • /
    • 2013
  • A 3D visual sensing method using a laser structured beam is presented for robotic tracking applications in a simple and reliable manner. A cylindrical shaped laser structured beam is proposed to measure the pose and position of the target surface. When the proposed laser beam intersects on the surface along the target trajectory, an elliptic pattern is generated. Its ellipse parameters can be induced mathematically by the geometrical relationship of the sensor coordinate and target coordinate. The depth and orientation of the target surface are directly determined by the ellipse parameters. In particular, two discontinuous points on the ellipse pattern, induced by seam trajectory, indicate mathematically the 3D direction for robotic tracking. To investigate the performance of this method, experiments with a 6 axis robot system are conducted on two different types of seam trajectories. The results show that this method is very suitable for robot seam tracking applications due to its excellence in accuracy and efficiency.

The Design of Target Tracking System Using FBFE based on VEGA (VEGA 기반 FBFE를 이용한 표적 추적 시스템 설계)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.126-130
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

Simulation combined transfer learning model for missing data recovery of nonstationary wind speed

  • Qiushuang Lin;Xuming Bao;Ying Lei;Chunxiang Li
    • Wind and Structures
    • /
    • v.37 no.5
    • /
    • pp.383-397
    • /
    • 2023
  • In the Structural Health Monitoring (SHM) system of civil engineering, data missing inevitably occurs during the data acquisition and transmission process, which brings great difficulties to data analysis and poses challenges to structural health monitoring. In this paper, Convolution Neural Network (CNN) is used to recover the nonstationary wind speed data missing randomly at sampling points. Given the technical constraints and financial implications, field monitoring data samples are often insufficient to train a deep learning model for the task at hand. Thus, simulation combined transfer learning strategy is proposed to address issues of overfitting and instability of the deep learning model caused by the paucity of training samples. According to a portion of target data samples, a substantial quantity of simulated data consistent with the characteristics of target data can be obtained by nonstationary wind-field simulation and are subsequently deployed for training an auxiliary CNN model. Afterwards, parameters of the pretrained auxiliary model are transferred to the target model as initial parameters, greatly enhancing training efficiency for the target task. Simulation synergy strategy effectively promotes the accuracy and stability of the target model to a great extent. Finally, the structural dynamic response analysis verifies the efficiency of the simulation synergy strategy.

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad;Gerdooei, Mahdi;Nosrati, Hasan Ghaforian
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.737-745
    • /
    • 2020
  • Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.