DOI QR코드

DOI QR Code

Blast resistance of a ceramic-metal armour subjected to air explosion: A parametric study

  • Rezaei, Mohammad Javad (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology) ;
  • Gerdooei, Mahdi (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology) ;
  • Nosrati, Hasan Ghaforian (Department of Mechanical Engineering, Esfarayen University of Technology)
  • Received : 2019.05.12
  • Accepted : 2019.12.28
  • Published : 2020.06.25

Abstract

Nowadays, composite plates are widely used as high-strength structures to fabricate a dynamic loading-resistant armours. In this study, the shock load is applied by an explosion of spherical TNT charge at a specified distance from the circular composite plate. The composite plate contains a two-layer ceramic-metal armour and a poly-methyl methacrylate (PMMA) target layer. The dynamic behavior of the composite armour has been investigated by measuring the transferred effective stress and maximum deflection into the target layer. For this purpose, the simulation of the blast loading upon the composite structure was performed by using the load-blast enhanced (LBE) procedure in Ls-Dyna software. The effect of main process parameters such as the thickness of layers, and scaled distance has been examined on the specific stiffness of the structure using response surface method. After validating the results by comparing with the experimental results, the optimal values for these parameters along with the regression equations for transferred effective stress and displacement to the target have been obtained. Finally, the optimal values of input parameters have been specified to achieve minimum transferred stress and displacement, simultaneously with reducing the weight of the structure.

Keywords

References

  1. Aslani, A. and Zamani Ashani, J. (2015), "A numerical analysis on effect of impedance and thickness of various layers on deflection of target plate in layered armor systems under explosive loading", J. Sci. Technol. Compos., 1(2), 11-20.
  2. Azadi, M., Azadi, S., Zahedi, F. and Moradi, M. (2009), "Multidisciplinary optimization of a car component under NVH and weight constraints using RSM", ASME 2009 International Mechanical Engineering Congress and Exposition, 315-319, Florida, November.
  3. Dorogoy, A., Rittel, D. and Brill, A. (2010), "A Study of inclined impact in polymethylmethacrylate plates", J. Impact Eng., 37(3), 285-294. https://doi.org/10.1016/j.ijimpeng.2009.06.013
  4. Fedosov, S. A. (1999), "Laser beam hardening of carbon and low alloyed steels: discussion of increased quantity of retained austenite", J. Mater. Sci., 34(17), 4259-4264. https://doi.org/10.1023/A:1004607020302
  5. Gooch, W. A., Chen, B. H. C., Burkins, M. S., Palicka, R., Rubin, J. J. and Ravichandran, R. (1999), "Development and Ballistic Testing of a Functionally Gradient Ceramic/Metal Applique", Materials Science Forum, 308-311, 614-621. https://doi.org/10.4028/www.scientific.net/MSF.308-311.614
  6. Holmquist, T. J. and Johnson, G. R. (2002), "Response of silicon carbide to high velocity impact", J. Appl. Phys., 91(9), 5858-5866. https://doi.org/10.1063/1.1468903.
  7. Isa, M. F. M., Risby, M. S., Norazman, M. N., Khalis, S., Hafizi, M. N. and Arif, S. (2018), "Simulation on the shock attenuation behavior of coupled RHA and sandwich composite panel under blast loading", J. Fundamental Appl. Sci., 9(3S), 555. https://doi.org/10.4314/jfas.v9i3s.43
  8. Johnson, G. R. and Cook, W. H. (1985), "Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures", Eng. Fracture Mech., 21(1), 31-48. https://doi.org/10.1016/0013-7944(85)90052-9.
  9. Keshavarz, M. (2007), "Detonation velocity of pure and mixed CHNO explosives at maximum nominal density", J. Hazardous Mater., 141(3), 536-539. https://doi.org/10.1016/j.jhazmat.2006.07.060
  10. Kingery, C. N. and Bulmash, G. (1984), Airblast Parameters from TNT Spherical Air Burst and Hemispherical Surface Burst, US Army Armament and Development Center, Ballistic Research Laboratory.
  11. Kinney, G. F. and Graham, K. J. (1985), Explosive Shocks in Air, Springer, Germany. https://doi.org/10.1007/978-3-642-86682-1
  12. Lotfi, S. and Zahrai, S. M. (2018), "Blast behavior of steel infill panels with various thickness and stiffener arrangement", Struct. Eng. Mech., 65(5), 587-600. https://doi.org/10.12989/sem.2018.65.5.587.
  13. Manual, K.U.S. (2012), LS-DYNA keyword user's manual Volume 1, Livermore Software Technology Corporation (LSTC), Livermore, CA, USA.
  14. Mazek, S. A. and Wahab, M. (2015), "Impact of composite materials on buried structures performance against blast wave", Struct. Eng. Mech., 53(3), 589-605. https://doi.org/10.12989/sem.2015.53.3.589.
  15. Mehreganian, N., Fallah, A. S., Boiger, G. K. and Louca, L. A. (2017), "Response of Armour Steel Square Plates To Localised Air Blast Load- a Dimensional Analysis", International Journal of Multiphysics, 11(December), 1-20. https://doi.org/10.21152/1750-9548.11.4.387
  16. Montgomery, D. C. (2012), Design and Analysis of Experiments (8th ed.), Wiley, Hoboken, NJ, USA.
  17. Moradi, M. and MohazabPak, A. R. (2018), "Statistical Modelling and Optimization of Laser Percussion Microdrilling of Inconel 718 Sheet Using Response Surface Methodology (RSM)", Lasers in Engineering (Old City Publishing), 39(3-6), 313-331.
  18. Neuberger, A., Peles, S. and Rittel, D. (2007), "Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading", J. Impact Eng., 34(5), 859-873. https://doi.org/10.1016/j.ijimpeng.2006.04.001.
  19. Rajendran, R. and Lee, J. M. (2009), "Blast loaded plates", Marine Struct., 22(2), 99-127. https://doi.org/10.1016/j.marstruc.2008.04.001.
  20. Randers-Pehrson, G. and Bannister, K.A. (1997), "Airblast Loading Model for DYNA2D and DYNA3D", Army Research Lab., Aberdeen Proving Ground, M.D., 15, 97.
  21. Haghi, R., Bashir Behjat, M. and Yazdani, M. (2017), "Numerical Investigation of Composite Structures under Blast Loading", J. Mater. Environ. Sci., 8(6), 2231-2237.
  22. Robbins, J. R., Ding, J. L. and Gupta, Y. M. (2004), "Load spreading and penetration resistance of layered structures-a numerical study". J. Impact Eng., 30(6), 593-615. https://doi.org/10.1016/j.ijimpeng.2003.08.001.
  23. Shackelford, J. F., Han, Y.H., Kim, S. and Kwon, S.H. (2016), CRC Materials Science and Engineering Handbook, CRC Press, Florida, USA.
  24. Wang, A. J. and Hopkins, H. G. (1954), "On the plastic deformation of built-in circular plates under impulsive load", J. Mech. Phys. Solids, 3(1), 22-37. https://doi.org/10.1016/0022-5096(54)90036-8.
  25. Wang, Y.F. and Yang, Z.G. (2008), "Finite element model of erosive wear on ductile and brittle materials", Wear, 265(5-6), 871-878. https://doi.org/10.1016/j.wear.2008.01.014
  26. Wisniewski, A. and Tomaszewski, L. (2009), "Analysis of penetration depth with the use of AUTODYN 5 programme", Problemy Techniki Uzbrojenia, 38(110), 47-56.
  27. Wyser, Y., Pelletier, C. and Lange, J. (2001), Predicting and determining the bending stiffness of thin films and laminates. Packaging Technol. Sci., 14(3), 97-108. https://doi.org/10.1002/pts.540.
  28. Zamani, J. and Goudarzi, M. (2015), "Experimental and numerical investigation of the maximum deflection of circular aluminum plate subjected to free air explosion", Modares Mechanical Engineering, 15(1), http://journals.modares.ac.ir/article-15-10331-en.html.
  29. Zhang, Y., Outeiro, J.C. and Mabrouki, T. (2015), "On the Selection of Johnson-cook Constitutive Model Parameters for Ti-6Al-4V Using Three Types of Numerical Models of Orthogonal Cutting", Procedia CIRP, 31, 112-117. https://doi.org/https://doi.org/10.1016/j.procir.2015.03.052.
  30. Zhang, Z., Wang, L. and Silberschmidt, V.V. (2017), "Damage response of steel plate to underwater explosion: Effect of shaped charge liner", J. Impact Eng., 103, 38-49. https://doi.org/10.1016/j.ijimpeng.2017.01.008.

Cited by

  1. Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study vol.77, pp.3, 2020, https://doi.org/10.12989/sem.2021.77.3.305
  2. Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading vol.77, pp.4, 2021, https://doi.org/10.12989/sem.2021.77.4.441