• Title/Summary/Keyword: target mobility

Search Result 221, Processing Time 0.033 seconds

Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films

  • Kim, Sang Jin;Lee, Bora;Choi, Yong Seok;Kim, Philip;Hone, James;Hong, Byung Hee;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.301.1-301.1
    • /
    • 2016
  • We report an ultraclean, cost-effective, and easily scalable method of transferring and patterning large-area graphene using pressure sensitive adhesive films (PSAFs) at room temperature. This simple transfer is enabled by the difference in wettability and adhesion energy of graphene with respect to PSAF and a target substrate. The PSAF transferred graphene is found to be free from residues, and shows excellent charge carrier mobility as high as ${\sim}17,700cm^2/V{\cdot}s$ with less doping compared to the graphene transferred by thermal release tape (TRT) or poly(methyl methacrylate) (PMMA) as well as good uniformity over large areas. In addition, the sheet resistance of graphene transferred by recycled PSAF does not change considerably up to 4 times, which would be advantageous for more cost-effective and environmentally friendly production of large-area graphene films for practical applications.

  • PDF

A Study on the Optical Property of Al-N-codoped p-type ZnO Thin Films Fabricated by DC Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.319-320
    • /
    • 2009
  • In this study, high-quality Al-N doped p-type ZnO thin films were deposited on n-type Si (100) wafer or Si coated with buffer layer by DC magnetron sputtering in the mixture of $N_2$ and $O_2$ gas. The target was ceramic ZnO mixed with $Al_2O_3$ (2 wt%). The p-type ZnO thin film showed higher carrier concentration $2.93\times10^{17}cm^{-3}$, lower resistivity of $5.349\;{\Omega}cm$ and mobility of $3.99\;cm^2V^{-1}S^{-1}$, respectively. According to PL spectrum, the Al donor energy level depth ($E_d$) of Al-N codoped p-type ZnO film was reduced to about 51 meV, and the N acceptor energy level depth ($E_a$) was reduced to 63 meV, respectively.

  • PDF

Identification and Characterization of LHX8 DNA Binding Elements

  • Park, Miree;Jeon, Sanghyun;Jeong, Ji-Hye;Park, Miseon;Lee, Dong-Ryul;Yoon, Tae Ki;Choi, Dong Hee;Choi, Youngsok
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.379-384
    • /
    • 2012
  • Lhx8 (LIM homeobox 8) gene encodes a LIM homeodomain transcriptional regulator that is preferentially expressed in germ cells and critical for mammalian folliculogenesis. However, Lhx8 DNA binding sequences are not characterized yet. We aimed to identify and characterize a cis-acting sequence of germ-cell specific transcriptional factor, Lhx8. To identify Lhx8 DNA binding element, Cyclic Amplification of Sequence Target (CAST) Analysis was performed. Electrophoretic Mobility Shift Assay (EMSA) was processed for the binding specificity of Lhx8. Luciferase assay was for the transcriptional activity of Lhx8 through identified DNA binding site. We identified a putative cis-acting sequence, TGATTG as Lhx8 DNA binding element (LBE). In addition, Lhx8 binds to the LBE with high affinity and augments transcriptional activity of luciferase reporter driven by artificial promoter containing the Lhx8 binding element. These findings indicate that Lhx8 directly regulates the transcription of genes containing Lhx8 binding element in oocytes during early folliculogenesis.

Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering (RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과)

  • Jung, Il-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.7
    • /
    • pp.584-588
    • /
    • 2011
  • The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

A Study of PDAs Icon Design Guideline Considered User's Cognitive Human Factor (사용자 인지특성을 고려한 PDA아이콘 설계지침에 관한 연구)

  • Kim, Sang-hwan;Myung, Rohae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.30 no.4
    • /
    • pp.338-345
    • /
    • 2004
  • Personal Digital Assistants (PDAs) have become ubiquitous and continued to gain popularity. Since PDAs have some special contexts such as mobility and limited screen size, icons are utilized frequently because icons allow us to do tasks more rapidly and effectively on PDAs like another information appliances. The study presents a cognitive approach to study human factors affecting icon design with multidimensional Scaling (MDS) analysis. In the experiment, a real PDA was used to investigate 29 attributes and2 preference ratings for 22 PDA icons by 20 Korean subjects. As a result, cognitive positioning about icons, attributes, and preference data were arranged on the two dimensional perceptual map. Attributes were grouped by simplicity, universality, activity, complexity, abstraction, static, and alphanumeric time. Subjects preferences were highly related with simplicity attributes group and positive to universality and activity attributes groups. It was also confirmed that there are some icons unfitted to the mental model of Korean. However, when icons are designed for PDAs or similar information appliances to Korean, it should be designed simply and actively with universal image fitted on target users mental model.

Preparation of ATO Thin Films by DC Magnetron Sputtering (II)Electrical Properties (DC Magnetron Sputtering에 의한 ATO 박막의 제조(II)전기적 특성)

  • Yoon, C.;Lee, H.Y.;Chung, Y.J.;Lee, K.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.514-518
    • /
    • 1996
  • Sb doped SnO2(ATO: Antinomy doped Tin Oxide) thin films were prepared by a DC magnetron spttuering method using an oxide target and the electrical characteristics of ATO films were investigated. The experimen-tal conditions are as follows :Ar flow rate ; 0~100 sccm deposition tempera-ture ; 250~40$0^{\circ}C$ DC sputter powder ; 150~550W and sputteing pressure ; 2~7 mTorr, The thickness of depositied ATO films were 600$\AA$~1100 $\AA$ ranges. The resistivity of ATO films was decreased due to the increase of the crystallinity of ATO films with deposition temperature. The decrease of carrier concentration of films with the increase of oxygen flow rate and working pressure is responsible for the increase of resistivity. Increasing of sputtering power raised the resistivity of films by decreasing the carrier mobility.

  • PDF

The Characteristic Changes of Amorphous-InGaZnO Thin Film according to RF Power (RF Power에 따른 Amorphous-InGaZnO 박막의 특성 변화)

  • Kim, Sang-Hun;Park, Yong-Heon;Kim, Hong-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.293-297
    • /
    • 2010
  • We have studied the optical and electrical properties of a-IGZO thin films on the n-type semiconductor fabricated by RF magnetron sputtering method. The ceramic target was used in which $In_2O_3$, $Ga_2O_3$ and ZnO powder were mixed with 1:1:2 mol% ratio and furnished. The RF power was set at 25 W, 50 W, 75 W and 100 W as a variable process condition. The transmittance of the films in the visible range was above 80%, and it was 92% in the case of 25 W power. AFM analysis showed that the roughness increased as increasing RF power, and XRD showed amorphous structure of the films without any peak. The films are electrically characterized by high mobility above 10 $cm^2/V{\cdot}s$ at low RF power, high carrier concentration and low resistivity. It is required to study further finding the optimal process condition such as lowering the RF power, prolonging the deposition ratio and qualification analysis.

Study on the Properties of ZnO:Ga Thin Films with Substrate Temperatures (기판 온도에 따른 ZnO:Ga 박막의 특성)

  • Kim, Jeong-Gyoo;Park, Ki-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.794-799
    • /
    • 2017
  • Ga-doped ZnO (GZO) films were deposited by an RF magnetron sputtering method on glass substrates using ZnO as a target containing 5 wt% $Ga_2O_3$ powder (for Ga doping). The structural, electrical, and optical properties of the GZO thin films were investigated as a function of the substrate temperatures. The deposition rate decreased with increasing substrate temperatures from room temperature to $350^{\circ}C$. The films showed typical orientation with the c-axis vertical to the glass substrates and the grain size increased up to a substrate temperature of $300^{\circ}C$ but decreased beyond $350^{\circ}C$. The resistivity of GZO thin films deposited at the substrate temperature of $300^{\circ}C$ was $7{\times}10^{-4}{\Omega}cm$, and it showed a dependence on the carrier concentration and mobility. The optical transmittances of the films with thickness of $3,000{\AA}$ were above 80% in the visible region, regardless of the substrate temperatures.

Study on Indium-free and Indium-reduced thin film solar absorber materials for photovoltaic application

  • Wibowo, Rachmat Adhi;Kim, Gyu-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.270-273
    • /
    • 2007
  • In this report, Indium-free and Indium-reduced thin film materials for solar absorber were studied in order to search alternative materials for thin film solar cell. The films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ were deposited using mixed binary chalcogenides powders. From the film bulk analysis result, it is observed that Cu concentration is a function of substrate temperature as well as CuSe mole ratio in the target. Under optimized conditions, $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ thin films grow with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^4$ $cm^{-1}$. $Cu_2ZnSnSe_4$ film shows a 1.5 eV band gap. On the other side, an increasing of optical band gap from 1.0 eV to 1.25 eV ($CuInSnSe_2$) is found to be proportional with an increasing of Zn concentration. All films have a p-type semiconductor characteristic with a carrier concentration in the order of $10^{14}$ $cm^{-3}$, a mobility about $10^1$ $cm^{2{\cdot}-1.}S^{-1}$ and a resistivity at the range of $10^2-10^6$ ${\Omega}{\cdot}m$.

  • PDF

An Availability of Low Cost Sensors for Machine Fault Diagnosis

  • SON, JONG-DUK
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.394-399
    • /
    • 2012
  • In recent years, MEMS sensors show huge attraction in machine condition monitoring, which have advantages in power, size, cost, mobility and flexibility. They can integrate with smart sensors and MEMS sensors are batch product. So the prices are cheap. And the suitability of it for condition monitoring is researched by experimental study. This paper presents a comparative study and performance test of classification of MEMS sensors in target machine fault classification by 3 intelligent classifiers. We attempt to signal validation of MEMS sensor accuracy and reliability and performance comparisons of classifiers are conducted. MEMS accelerometer and MEMS current sensors are employed for experiment test. In addition, a simple feature extraction and cross validation methods were applied to make sure MEMS sensors availabilities. The result of application is good for using fault classification.

  • PDF