• Title/Summary/Keyword: tapering angle

Search Result 11, Processing Time 0.021 seconds

Modeling of the Axial Movement of Parts During Centerless Through-Feed Grinding

  • Kim, Kang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.7
    • /
    • pp.1044-1053
    • /
    • 2003
  • There are two major differences between the centerless infeed grinding process and the centerless through-feed grinding process. One is an axial movement of workpieces, and the other is that several workpieces are ground simultaneously and continuously by through-feeding. Because of these differences, through-feed ground parts inherently possess not only the roundness error but also the tapering error. The aims of the research reported in this paper are to examine this inherent tapering characteristic and to find the effects of grinding variables (center height angle, regulating wheel tilt angle, and shape of grinding wheel surface). To accomplish the objectives, experiments were carried out using two types of cylindrical workpiece shapes. Also, computer simulations were performed using the 3-D through-feed grinding model.

Improvement of the Tapering Error in the Centerless Through-feed Ground Parts Using a Work-rest Blade (공작물 받침대를 이용한 무심관통이송 공작물의 테이퍼링 오차 개선)

  • Kim, Kang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.70-77
    • /
    • 2003
  • The centerless through-feed grinding is performed by passing the workpiece between the grinding wheel and the regulating wheel. So, the amount of removed material around the leading end, of the workpiece is always more than that around the trailing end until the leading end leaves the grinding wheel. Because of this, there are differences in diameters along the workpiece axis during grinding, and workpiece axis is not parallel to the grinding wheel axis and the contact lines between the workpiece and wheels. Thus the ground workpiece shows tapering error inherently. To eliminate this error, the workpiece axis must be kept to be parallel to the grinding wheel axis. And, the direction of the workpiece axis can be controlled by the work-rest blade. Therefore, the effects of work-rest blade inclination angle on the through-feed centerless ground part are investigated in this study. As a result, it is found that there is a positive inclination angle of the work-rest blade for minimizing the tapering error of a ground workpiece.

The Analysis of Threshold Voltage Shift for Tapered O/N/O and O/N/F Structures in 3D NAND Flash Memory (3D NAND Flash Memory에서 Tapering된 O/N/O 및 O/N/F 구조의 Threshold Voltage 변화 분석)

  • Jihwan Lee;Jaewoo Lee;Myounggon Kang
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • This paper analyzed the Vth (Threshold Voltage) variations in 3D NAND Flash memory with tapered O/N/O (Oxide/Nitride/Oxide) structure and O/N/F (Oxide/Nitride/Ferroelectric) structure, where the blocking oxide is replaced by ferroelectric material. With a tapering angle of 0°, the O/N/F structure exhibits lower resistance compared to the O/N/O structure, resulting in reduced Vth variations in both the upper and lower regions of the WL (Word Line). Tapered 3D NAND Flash memory shows a decrease in channel area and an increase in channel resistance as it moves from the upper to the lower WL. Consequently, as the tapering angle increases, the Vth decreases in the upper WL and increases in the lower WL. The tapered O/N/F structure, influenced by Vfe proportional to the channel radius, leads to a greater reduction in Vth in the upper WL compared to the O/N/O structure. Additionally, the lower WL in the O/N/F structure experiences a greater increase in Vth compared to the O/N/O structure, resulting in larger Vth variations with increasing tapering angles.

Shear strength of non-prismatic steel fiber reinforced concrete beams without stirrups

  • Qissab, Musab Aied;Salman, Mohammed Munqith
    • Structural Engineering and Mechanics
    • /
    • v.67 no.4
    • /
    • pp.347-358
    • /
    • 2018
  • The main aim of this research was to investigate the shear strength of non-prismatic steel fiber reinforced concrete beams under monotonic loading considering different parameters. Experimental program included tests on fifteen non-prismatic reinforced concrete beams divided into three groups. For the first and the second groups, different parameters were taken into consideration which are: steel fibers content, shear span to minimum depth ratio ($a/d_{min}$) and tapering angle (${\alpha}$). The third group was designed mainly to optimize the geometry of the non-prismatic concrete beams with the same concrete volume while the steel fiber ratio and the shear span were left constant in this group. The presence of steel fibers in concrete led to an increase in the load-carrying capacity in a range of 10.25%-103%. Also, the energy absorption capacity was increased due to the addition of steel fibers in a range of 18.17%-993.18% and the failure mode was changed from brittle to ductile. Tapering angle had a clear effect on the shear strength of test specimens. The increase in tapering angle from ($7^{\circ}$) to ($12^{\circ}$) caused an increase in the ultimate shear capacity for the test specimens. The maximum increase in ultimate load was 45.49%. The addition of steel fibers had a significant impact on the post-cracking behavior of the test specimens. Empirical equation for shear strength prediction at cracking limit state was proposed. The predicted cracking shear strength was in good agreement with the experimental findings.

The Analysis of Lateral Charge Migration at 3D-NAND Flash Memory by Tapering and Ferroelectric Polarization (Tapering과 Ferroelectric Polarization에 의한 3D NAND Flash Memory의 Lateral Charge Migration 분석)

  • Lee, Jaewoo;Lee, Jongwon;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.770-773
    • /
    • 2021
  • In this paper, the retention characteristics of 3D NAND flash memory applied with tapering and ferroelectric (HfO2) structure were analyzed after programming operation. Electrons trapped in nitride are affected by lateral charge migration over time. It was confirmed that more lateral charge migration occurred in the channel thickened by tapering of the trapped electrons. In addition, the Oxide-Nitride-Ferroelectric (ONF) structure has better lateral charge migration due to polarization, so the change in threshold voltage (Vth) is reduced compared to the Oxide-Nitride-Oxide (ONO) structure.

Calculations of Thickness Uniformity in Molecular Beam Epitaxial Growth (MBE 장치에 의한 에피 성장 두께 균일도 계산)

  • 윤경식;김은규;민석기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.81-87
    • /
    • 1993
  • The growth thickness uniformity of epitaxial layers deposited using a moiecular beam epitaxy system is calculated from the arrangement of molecular beam source and the substrate and the geometric dimensions of the crucible in order to predict the optimum design conditions of the prototype MBE system. The thickness uniformity better than 5% over a 3-inch wafer can be obtained by keeping the distance between the substrate and the crucible's orifice longer than 20cm, the tapering angle of the crucible larger than 6$^{\circ}$, and the angle between the normal to the substrate at the center and the crucible axis as larger as possible. In addition, the growth yield decreases to below 51% as the distance between the substrate and the orifice becomes longer than 25cm.

  • PDF

Enthalpy Flow Loss by Steady Mass Streaming in Pulse Tube Refrigerators (맥동관냉동기의 정상상태 질량흐름에 의한 엔탈피손실)

  • 백상호;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.623-631
    • /
    • 2000
  • Effects of the taper angle and the angular velocity of a pulse tube on the enthalpy flow loss associated with the steady mass streaming were analysis by two-dimensional analysis of a pulse tube with variable cross-section. It was shown that the steady mass flux can lead to a large steady second-order temperature. The enthalpy flow loss associated with the steady mass streaming increases as the angular velocity increases. For a pulse tube where the viscous penetration depth is far thinner than the inner radius, the enthalpy flow loss can be significantly reduced by tapering the pulse tube since both the steady mass flux and the steady second-order temperature decrease as the taper angle increase.

  • PDF

Effects of imperfection shapes on buckling of conical shells under compression

  • Shakouri, Meisam;Spagnoli, Andrea;Kouchakzadeh, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.3
    • /
    • pp.365-386
    • /
    • 2016
  • This paper describes a systematic numerical investigation into the nonlinear elastic behavior of conical shells, with various types of initial imperfections, subject to a uniformly distributed axial compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design of conical shells.

Two-Dimensional Analysis Model for Tapered Pulse Tubes (테이퍼를 갖는 맥동관의 2차원 해석모델)

  • Baek, Sang-Ho;Jeong, Eun-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.668-676
    • /
    • 2000
  • A two-dimensional model for pulse tubes with tapered cross-section was proposed. Net enthalpy flow and steady mass streaming were investigated by two-dimensional analysis of mass, momentum and energy equations of the gas as well as energy conservation of the tube wall. Steady mass flux profiles show good agreement with the previous approximate solution. It was shown that steady mass streaming can be reduced by tapering a pulse tube and by increasing the length of a pulse tube. Effects of the velocity phase angle and frequency on steady mass streaming were shown.

Analysis of a T-Shaped UWB Printed Monopole Antenna Using Surface Currents (표면 전류 분포를 이용한 T자형 UWB 평면형 모노폴 안테나 해석)

  • Lee Dong-Hyun;Park Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.883-892
    • /
    • 2005
  • We propose a T-shaped UWB printed monopole antenna and investigate the effect of the surface currents of the radiator and ground plane. The measured impedance bandwidth of the antenna covers the range of 3.1 to 11 GHz for a VSWR$\le$2, which satisfies the requirement of the UWB operation. From the analysis of the surface currents, the proposed antenna can be treated as two asymmetric dipoles with the included angle of 90 degrees which lie along z-direction symmetrically. It is observed that the effect of the surface currents on the radiation patterns is similar to that of the corresponding dipole. The length and width of the found plane correspond the radius and length of the dipole respectively. This approach is also valid to general printed monopole antennas. Finally, we included an antenna example having resonance at a lower frequency by tapering the edges of the ground plane and another example having a bandstop characteristic by inserting an inverted-U slot on the radiator, and explain those antennas using the surface currents.