• Title/Summary/Keyword: taper 변수

Search Result 34, Processing Time 0.023 seconds

Elastica of Cantilever Column with Constant Volume Subjected to Combined Loads (조합하중을 받는 일정체적 캔틸레버 기둥의 정확탄성곡선)

  • Lee, Byoung-Koo;Li, Guangfan;Yoon, Hee-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.581-592
    • /
    • 2007
  • This paper deals with the elastica of deflected cantilever column with the constant volume. The columns are subjected to combined loads consisted of an axial compressive load and a couple moment at the free end. Differential equations governing the elastica of such column are derived, in which both the effects of taper type and shear deformation are included. Three kinds of taper types are considered: linear, parabolic and sinusoidal tapers. Differential equations are solved numerically to obtain the elastica of objective columns. The effects of various system parameters on the elastica are investigated extensively. Experimental studies were carried out in order to verify the theoretical results of non-linear behavior of the elasticas.

Critical Loads of Tapered Cantilever Columns with a Tip Mass (자유단 집중질량을 갖는 변단면 캔틸레버 기둥의 임계하중)

  • Jeong, Jin Seob;Lee, Byoung Koo;Kim, Gwon Sik;Kim, Jong Ung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.699-705
    • /
    • 2005
  • This paper investigates critical loads of tapered cantilever columns with a tip mass, subjected to a follower force. The linearly tapered solid rectangular cross-sections are adopted as the column taper. The differential equation governing free vibrations of such columns, also called Beck's columns, is derived using the Bernoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters, namely, the taper type, the subtangential parameter, and the mass ratio.

Optimal Design of FRP Taper Spring Using Response Surface Analysis (반응표면분석법을 이용한 FRP Leaf Spring의 최적설계)

  • 임동진;이윤기;김민호;윤희석
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • The present paper is concerned with the optimum design of taper spring, in which the static spring rate of the fiber-reinforcement composite material spring is fitted to that of the steel leaf spring. The thickness and width of springs were selected as design variables. The object functions of the regression model were obtained through the analysis with a common analytic program. After regression coefficients were calculated to get functions of the regression model, optimal solutions were calculated with DOT. E-glass/epoxy and carbon/epoxy were used as fiber reinforcement materials in the design, which were compared and analyzed with the steel leaf spring. The result of the static spring rates show that optimized composite leaf springs agree with steel leaf spring within 1%.

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Determination of Eigenvalues of Sinusoidally Tapered Members by Finite Element Method (유한요소법을 이용한 정현상으로 taper진 부재의 고유치 산정)

  • Lee, Soo-Gon;Kim, Soon-Chul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.1
    • /
    • pp.87-95
    • /
    • 2000
  • The two eigenvalues (elastic critical load and natural frequency of lateral vibration) of sinusoidally tapered bats with simply supported ends were determined by the finite element method. For the convenience of structural engineers who are engaged in the structural design or vibration analysis of tapered beam-columns, eigenvalue coefficients were expressed by simple algebraic equations. The validity of each algebraic equation was confirmed by the value of unity for each correlation coefficient. The influence of axial thrust on the lateral vibration frequency was also investigated. For this purpose, the axial thrust was increased successively and the corresponding frequency was calculated. The approximate linear relationship between the axial thrust and the square of the frequency was confirmed lot each of the tapered members.

  • PDF

A Study on the Characteristics of Monolithic Laser-Waveguide Coupler by BPM (BPM에 의한 Monolithic Laser-Waveguide Coupler의 특성 연구)

  • 장지호;최태일;최병하
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.1
    • /
    • pp.100-110
    • /
    • 1994
  • In this paper, we present a new analysis of monolithic laser-waveguide coupling structure employing the beam propagation method. Monolithic laser-waveguide coupler has both passive and active components It has too many parameters to consider for an analysis. So we present proper model of coupler by use of directional coupler. We employ the beam propagation method th analyze the proposed structure, we could employ the coupled mode theory but we thought in the case of this paper the beam propagation method is more appropriate than coupler mode theorybecause a number of variables which to consider is too many for the coupled mode theory. Also we use finite difference method to calcurate trial field which is a starting point of beam propagation analysis. Through this approach, we can consider more parameters. And we propose a new structure of monolothic laser-waveguide coupler which has taper structure between the distance in which coupling is taking place and passive waveguide. We can obtain 79% high coupling efficiency from our structure.

  • PDF

A study on the adaptive control of process parameters using torque for end milling operation in machining center (Machining Center에서 End Millirh할 때 Torgue에 의한 가공변수의 적응제어에 관한 연구)

  • 박천령;윤문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.889-897
    • /
    • 1986
  • The purpose of this study is to describe the strategy of machining process suitable for developing adaptive control with constraint of NC-machine tool. The algorithm that controls machining process parameters of every sampling time is established for the constraint of torque in machinig center. To prove this AC algorithm, manual AC-unit control test is used for simulating the on-line AC strategy control. Also machining tests are carried out on a CNC-machining center fitted with the ACC system and compared with the simulated results. The practical effectiveness of the ACC systems so discussed and the reduction of machining time are demonstrated with reference to typical models of cutting workpieces. As a typical model, taper and step geometry model are selected. The computer simulation results have a good agreement with the experimental observation and make it possible to develope a NC-machine tool with an on-line ACC system.

Aerodynamic Characteristics of a Three-Dimensional Wing in Heave Oscillation (히브진동하는 3차원 날개 공력특성)

  • Chin, Chul-Soo;Kim, Tae-Wan;Lee, Hyoung-Wook;Han, Cheol-Heui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.10
    • /
    • pp.905-911
    • /
    • 2011
  • With the progress of micro actuator technology, studies on the development of micro air flapping wing vehicles are actively undergoing. In the present study, the changes of both lift and thrust characteristics of the wings are investigated using a boundary element method. Lift of the heaving wing is not generated when the wing is beating with smaller frequencies than 1 Hz. Thrust increases with amplitude and frequency. As the wing's taper and aspect ratios increase, both lift and thrust also increase. Results on the pitching oscillation and flapping motion will be included in the future work.

Folded Ultra Wideband Monopole Antenna for SDR Application (Software Defined Radio (SDR) 무전기용 접힌 평면 구조의 초광대역 안테나)

  • Oh, Jun-Hwa;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.52-58
    • /
    • 2009
  • We propose a folded monopole antenna with loads, and analyze the roles of design parameters which affect the return loss of the proposed antenna. VSWR < 3 bandwidth of the antenna is 30 ~ 2000 MHz, ranging from the HF/VHF/UHF bands. For operating travelling antenna, we connect six loads at the end of the antenna. The reflected wave is drastically reduced due to the six loads. For improved return loss properties, we use Klopfenstein tape that determine positions and values of six loads. The propose antenna has omni-directional radiational patterns like that of conventional monopole antennas. For wideband impedance transformation, we use the balun which operating frequency region is 10 ~ 1900 MHz. We expect the proposed antenna has important role for the wideband and multi-rold multi-functional communication systems.

Vibration Analysis of Rotating Blades with the Cross Section Taper Considering the Pre-twist Angle and the Setting Angle (초기 비틀림각 및 장착 각의 영향을 고려한 단면 테이퍼진 회전 블레이드의 진동해석)

  • Lee, Jun-Hee;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.10-21
    • /
    • 2010
  • Equations of chordwise and flapwise bending motions for the vibration analysis of rotating pre-twisted blades having tapered cross section and setting angle are derived by using hybrid deformation variable modeling. The two motions are couples to each other due to the pre-twisted angle of the beam cross section. The derived equations are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters on the modal characteristics of rotating pre-twisted blades having tapered cross section and orientation angle are investigated. The eigenvalue loci veering phenomena are also investigated and discussed in this work.