• Title/Summary/Keyword: systems of linear equations

Search Result 468, Processing Time 0.03 seconds

Monitoring and Scheduling Methods for MIMO-FIFO Systems Utilizing Max-Plus Linear Representation

  • Goto, Hiroyuki;Masuda, Shiro
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.23-33
    • /
    • 2008
  • This paper proposes an approach to monitoring and scheduling methods for repetitive MIMO-FIFO DESs. We use max-plus algebra for modeling and formulation, known as an effective approach for controller design for this type of system. Because a certain type of linear equations in max-plus algebra can represent the system's behavior, the principal concerns in past researches were how to solve the equations. However, the researches focused mainly on analyses of the relation between inputs and outputs of the system, which implies that the changes or the slacks of internal states were not clarified well. We first examine several properties of the corresponding state variables, which contribute to finding and tracing the float times in each process. Moreover, we provide a rescheduling method that can take into account delays or changes of the internal states. These methods would be useful in schedule control or progress management.

Linear Quadratic Regulation and Tracking using Output Feedback with Direct Feedthrough

  • Kang, Seungeun;Cha, Jihyoung;Ko, Sangho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.593-603
    • /
    • 2016
  • This paper presents the development of linear quadratic regulation and output tracking algorithms using output feedback when both the measurement and performance output equations contain direct feedthrough terms. Although all physical systems can be modeled without direct feedthrough, there are still many situations where system models with direct feedthrough are important. For this situation, we modify previous work on the same topic for systems without direct feedthrough. It is shown that for the regulation problem, the optimal output feedback gain for a direct feedthrough case can be directly obtained, via a transformation, from the approach used for systems without direct feedthrough. However, for the tracking problem, a new set of coupled matrix equations for determining the optimal output feedback gain is derived from the necessary conditions for minimizing the cost function. The effectiveness of the developed algorithms is demonstrated using numerical examples.

Nonlinear vibration of multi-body systems with linear and nonlinear springs

  • Bayat, Mahmoud;Pakar, Iman;Bayat, Mahdi
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.497-503
    • /
    • 2017
  • In this paper, nonlinear vibration of multi-degree of freedom systems are studied. It has been tried to develop the mathematical model of systems by second-order nonlinear partial differential equations. The masses are connected with linear and nonlinear springs in series. A great effort has been done to solve the nonlinear governing equations analytically. A new analytical method called Variational Iteration Method (VIM) is proposed and successfully applied to the problem. The linear and nonlinear frequencies are obtained and the results are compared with numerical solutions. The first order of Variational Iteration Method (VIM) leads us to high accurate solution.

Stability Analysis of Linear Uncertain Differential Equations

  • Chen, Xiaowei;Gao, Jinwu
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.1
    • /
    • pp.2-8
    • /
    • 2013
  • Uncertainty theory is a branch of mathematics based on normolity, duality, subadditivity and product axioms. Uncertain process is a sequence of uncertain variables indexed by time. Canonical Liu process is an uncertain process with stationary and independent increments. And the increments follow normal uncertainty distributions. Uncertain differential equation is a type of differential equation driven by the canonical Liu process. Stability analysis on uncertain differential equation is to investigate the qualitative properties, which is significant both in theory and application for uncertain differential equations. This paper aims to study stability properties of linear uncertain differential equations. First, the stability concepts are introduced. And then, several sufficient and necessary conditions of stability for linear uncertain differential equations are proposed. Besides, some examples are discussed.

Robust Control of Linear Systems Under Structured Nonlinear Time-Varying Perturbations II : Synthesis via Convex Optimazation

  • Bambang, Riyanto-T.;Shimemura, Etsujiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.100-104
    • /
    • 1993
  • In Part 1, we derived robust stability conditions for an LTI interconnected to time-varying nonlinear perturbations belonging to several classes of nonlinearities. These conditions were presented in terms of positive definite solutions to LMI. In this paper we address a problem of synthesizing feedback controllers for linear time-invariant systems under structured time-varying uncertainties, combined with a worst-case H$_{2}$ performance. This problem is introduced in [7, 8, 15, 35] in case of time-invariant uncertainties, where the necessary conditions involve highly coupled linear and nonlinear matrix equations. Such coupled equations are in general difficult to solve. A convex optimization approach will be employed in this synthesis problem in order to avoid solving highly coupled nonlinear matrix equations that commonly arises in multiobjective synthesis problem. Using LMI formulation, this convex optimization problem can in turn be cast as generalized eigenvalue minimization problem, where an attractive algorithm based on the method of centers has been recently introduced to find its solution [30, 361. In the present paper we will restrict our discussion to state feedback case with Popov multipliers. A more general case of output feedback and other types of multipliers will be addressed in a future paper.

  • PDF

STABILITY AND CONSTRAINED CONTROLLABILITY OF LINEAR CONTROL SYSTEMS IN BANACH SPACES

  • Phat, Vu-Ngoc;Park, Jong-Yeoul;Jung, Il-Hyo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.593-611
    • /
    • 2000
  • For linear time-varying control systems with constrained control described by both differential and discrete-time equations in Banach spaces was give necessary and sufficient conditions for exact global null-controllability. We then show that for such systems, complete stabilizability implies exact null-controllability.

  • PDF

HIGH-DEGREE INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • Kim, Kyung-Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.475-485
    • /
    • 2007
  • We construct high-degree interpolation rules using not only pointwise values of a function but also of its derivatives up to the p-th order at equally spaced nodes on a closed and bounded interval of interest by introducing a linear functional from which we produce systems of linear equations. The linear systems will lead to a conclusion that the rules are uniquely determined for the nodes. An example is provided to compare the rules with the classical interpolating polynomials.

AN OVERVIEW OF MAX-PLUS LINEAR SYSTEMS

  • Kim, Yong-Gu;Shin, Hyun-Hee
    • Honam Mathematical Journal
    • /
    • v.33 no.1
    • /
    • pp.93-113
    • /
    • 2011
  • Let $a{\oplus}b$ = max(a, b), $a{\otimes}b$=a+b, a, $b\in\mathbb{R}_{\varepsilon}\;:=\cup\{-\infty\}$. In max-plus algebra we work on the linear algebra structure for the pair of operations (${\oplus},{\otimes}$) extended to matrices and vectors over $\mathbb{R}_{\varepsilon}$. In this paper our main aim is to reproduce the work of R. A. Cuninghame-Green [3] on the linear systems over a max-plus semi-field $\mathbb{R}_{\varepsilon}$.

POLYNOMIAL-FITTING INTERPOLATION RULES GENERATED BY A LINEAR FUNCTIONAL

  • Kim Kyung-Joong
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.2
    • /
    • pp.397-407
    • /
    • 2006
  • We construct polynomial-fitting interpolation rules to agree with a function f and its first derivative f' at equally spaced nodes on the interval of interest by introducing a linear functional with which we produce systems of linear equations. We also introduce a matrix whose determinant is not zero. Such a property makes it possible to solve the linear systems and then leads to a conclusion that the rules are uniquely determined for the nodes. An example is investigated to compare the rules with Hermite interpolating polynomials.

A SECOND ORDER UPWIND METHOD FOR LINEAR HYPERBOLIC SYSTEMS

  • Sohn, Sung-Ik;Shin, Jun-Yong
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.103-120
    • /
    • 2002
  • A second order upwind method for linear hyperbolic systems is studied in this paper. The method approximates solutions as piecewise linear functions, and state variables and slopes of the linear functions for next time step are computed separately. We present a new method for the computation of slopes, derived from an upwinding difference for a derivative. For nonoscillatory solutions, a monotonicity algorithm is also proposed by modifying an existing algorithm. To validate our second order upwind method, numerical results for linear advection equations and linear systems for elastic and acoustic waves are given.