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HIGH-DEGREE INTERPOLATION RULES GENERATED BY
A LINEAR FUNCTIONAL

Kyung Joong KiM

ABSTRACT. We construct high-degree interpolation rules using not only
pointwise values of a function but also of its derivatives up to the p-th
order at equally spaced nodes on a closed and bounded interval of interest
by introducing a linear functional from which we produce systems of linear
equations. The linear systems will lead to a conclusion that the rules are
uniquely determined for the nodes. An example is provided to compare
the rules with the classical interpolating polynomials.

1. Introduction

Given any function, defined and continuous on a closed and bounded inter-
val, there exists a polynomial that is as close to the given function as desired.
This result is obtained from the Weierstrass approximation theorem [8]. This
is an important reason for considering the class of polynomials in the approx-
imation of functions. First we may consider the Taylor polynomials as the
interpolating polynomials. But the Taylor polynomials have the property that
all the information used in the approximation is concentrated at a single point.
This fact limits Taylor polynomial approximation to the situation in which
the approximation is needed only at points close to the single point. A good
interpolation polynomial requires to provide a relatively accurate approxima-
tion over an entire interval of interest. The Hermite interpolating polynomials
are among very useful and well-known classes of functions for such a require-
ment [1, 2, 6]. The fundamental concept of the Hermite interpolation theory
was given in [6] and the divided difference method was considered to make
it easier to construct the Hermite interpolating polynomials [7]. The core in
generating the Hermite interpolating polynomials is to use the information of
a function and its derivatives up to a certain order at nodes on the interval of
interest. In the paper, we introduce a new method to construct interpolation
rules which use the information of a function and its derivatives up to the p-th
order at equally spaced nodes on a closed and bounded interval. Restricting
the method to the case of p = 1, we will have the results of [5]. Recently,
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integration formulas constructed by linear functionals using a function or its
first derivative were considered for oscillatory functions [3, 4]. In Section 2, we
construct high-degree interpolation rules from the system of linear equations
which are generated by a linear functional. In the process of the construction,
a matrix is investigated whose determinant is not zero and its property leads
us to be able to provide the interpolation rules for the equidistant nodes. In
Section 3, a classical interpolating polynomial, based on the general Hermite
interpolation theory, is presented and compared with the rule to be constructed
in Section 2.

2. High-degree interpolation rules

Consider a function f and its interpolation rule, denoted by I, which involves
not only pointwise values of the function but also of its derivatives up to the
p-th order at equidistant nodes, viz.:

f{zo + Nht) = I(t)
N

1) = > oxf(zo+kh)

k=—N

N N
+h S oV @o+ kb)Y 4402 ST ol O (g + kh)
k=—N k=—N

where N is a positive integer, x is the middle node on the interval of interest,
the other nodes on the interval are equally spaced by A and —1 < ¢ < 1. The
rule I(t), defined on [—1,1], will approximate the function f on the interval
[0 — Nh,zo + Nh] by using the values of the function and its derivatives
up to the p-th order at nodes zo — Nh,...,zq — h,zo, 20 + h,..., 29 + Nh.
For convenience, keep taking the notations ay and ag ) instead of a(t) and
a,(cJ )(t) indicating that «j and ag ) depend on ¢, where j = 1,2,...,p. From
the definition of I(t), we consider a linear functional L(f(z),h,C),

L(f(il?),h,C) = f(x"i'Nhf,)

N
— Y oxf(z+kh)

k=—N

N
(2) —h Z a,(cl)f(l)(a: + kh)

k=—N

N
—hP Z agcp)f(p)(l’ + kh),
k=—N
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where C is the vector of coefficients a and a,(cj ) which have to be expressed in
terms of the variable ¢, C = (oz_N,...,aN,oz(_lj)\,,...,a%),..., a(_p])v,...,ag\’,’)).
When the values of the function f and its derivatives up to the p-th order at
the nodes are assumed to be known, our aim is to determine the values of the

coefficients o and a,(cj ) from the conditions
(3) Lz hC) =0 (n=1,2,..).

By inserting each monomial f(z) = 1,z, 2, ... into (2), we get

(4)

N
LOhC)=1- > o,
k=—N
N N N
Lz, hC)=a(l— > ax)+h(Nt— Y oxk— Y af’),
k=~N k=-—N k=—N
N N N
L@ h,C) =221~ 3 o) +22h(Nt— Y ark— Y. o)
k=—N k=—N k=—N
N N N
+RAWVEE - Y k-2 ) alPk-2-1 Y o),
=—N k=—N k=—N

The values of L(z™,h,C) at z =0 for each m =0,1,2,..., will be denoted by
Ly (h,C). Then we have

N
Lo(h,C)=1-) of,
k=0

N N
Li(h,C)=h (Nt -~ ok~ a§j>+> ,

(5) k=0 k=0
N N B N 4
Lo(h,C) = h? ((Nt)2 ~Nafkr-2) o k-2-1)al? ) :
k=0 k=0 k=0

in general, for odd m > 3

Ly(h,C) = hA™ ((Nt)m ~ Yo ap k™ —m T, agﬁkm-l
(6) —m(m —1) Tl km2—
—m(m=1)-+ (m = (p = 1)) Tily & xk™?)
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and for even m > 4

La(r,0) = W (V)™ = i k™ —m o) km?
(7) —m(m -1, akQ) km=2 —
—m(m = 1)+ (m = (p— 1)) DALy O x k7)),

where
(iYfor1<j<p and 1<k<N

(8) agzzao, az_:a k+ak, Qp = —0Q_f + Qg,
agj)* =¥, (J) — U ) +a(]) (J) N I)c+a(J)
(i)
Pt p = even
9) 8=1 fye
o if p=odd
and
a,(cp)Jr if p=even
(10) O= - .
o, if p=odd.
Therefore (4) can be rearranged as follows:
L(1,h,C) = Lo(h,C),
L(z,h,C) = zLo(h,C)+ L1(h,C),
(11) L(z%,h,C) = 22Lo(h,C)+ 2zL1(h,C) + La(h,C),

Since L in (2) is a linear functional, it follows that, upon taking f(z) as an
expansion of power functions, f(z) = ag + a1z + azz? + - - -, we have
(12)

f(z),h,C) = Zam (z™, h,C)
=Lo(h,C)(ao+alx+a2x2+...)

+ Ll(hac)(al + 2a21 + 3(1,3;1;2 4+ .. )
+L2(h,C’)(a2 +3a3Z+6a4x2 + .. ) 4 ...

Lo(h,€)(2) + 73 La(h, C)f ) (@) + g La(h C)fP(z) +

= Y L) @)
m=0

Next, let us determine the values of the coefficients ay and a(] ) such that the
functional L is identically vanishing at any x and A # 0 for as many successive
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terms as the number of the coefficients. For such purpose it is natural to impose
that

(13) Lin(h,C) =0, m=0,1,...,(p+1)2N +1) -1,

since the number of the coefficients of the rule I in (1) is (p+ 1)(2N + 1). We

now obtain a system of (p+ 1)(2N + 1) linear equations in oy and aff ) (or of

o
and agf] ) ). But, instead of handling the system directly to find its solution oy

and ag ), we break the linear system into two types of smaller linear systems,
(14) M, X =T, and M.Y =T,

which are easier to handle individually. The former is generated from the odd
equations, that is L,,(h,C) = 0 for odd m, while the latter from the even
equations, L,,(h,C) = 0 for even m. Therefore the former governs coefficients

a,:,agﬁ, a,(f)_,..., while the latter does a:,ag)_, afﬁ, .... In detail, we
have that
(15)
1 N 1 1 1 0 0
13 N 0 3-1? 3-N? 0 0
M, =
vio o ooveoy® oy oy ey
where, for k=1,2,...,Nand j=1,2,...,p,
(i) p = odd
Vk(o) = R2N@+U+p
Vi = @N@+1)+p)eNp+1)+p-1)

< @N(p 1) +p — ( ~ DRRNEHI,

(if) p = even

Vk(?) — ]<;2N(p+1)+p—17
v = @N@E+1)+p-1)2Np+1)+p—-2)

--(2N(p+1)+p— j)k2N(p+1)+p—l—j'
In particular,

v [0 (G=13,p) if p= odd
© 710 (j=13,---,p—1) ifp= even

X has two different forms in the first equation of (14), depending on p, that is,
for odd p,

(16)
— — nt nt n+ + +
X= (o ... ay o oV ol o Q)T
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and for even p,

a7)
+ — —
X= (o] ... ay af)l)Jr a(11)+ oY al?) a® )T
and T, is given as follows:
(18) T, (Nt (Nt)® ... (Nt)2NE+HD+ T if 5 = odd,
° (Nt (Nt)® ... (Nt)2Ne+D+p-1T if 5 — even.

Note that, for even j, agj )" (in fact, a(()j )) does not appear in X. As a result,

there is not any column in the matrix M, in the first equation of (14) corre-
sponding to the component aéj )™ for even j. But, there exist columns in M,
s
corresponding to aéj )" for odd J-
Let us investigate the existence of the unique solution of the linear system,
M,X = T,. This will be done by constructing a matrix whose determinant is
not zero. For distinct real number wy, let W), denote a column vector by

+a , prat2 pg+2] pHa+2(N(p+1)—1)\ T
(Wi, wh e LWy (N(p+1) )) .

PR

Define a N(p+ 1) x N(p+ 1) matrix W as
(19) W= W,... Wy, W, oWl WP WP,

where the superscript on Wy means the order of the derivative of Wj with
respect to wy, that is W,éj ) = @ Wi/ dwi. Consider the determinant of W,
det(W), as a polynomial P(w;) in wy and expand det(W) using the (Nk+1)th
columns of W (k = 0,1,...,p). Then, the lowest degree term in P(w;) has
degree

1
(20) 50+ 1)(3p + 20)
Thus, we have
(21) P(wy) = w2 By, )

where Is(wl) is a polynomial in wy; whose coefficients consist of polynomials
in ws,...,wy. Moreover, wy and —wy (kK = 2,3,...,N) are zeros of P{w;)
with multiplicity (p 4 1)2, respectively. The multiplicity comes from the fact
that the determinant of a matrix with two equal columns is zero. Note that
the derivative of det(W) with respect to wy, d;:)l det(W), is the sum of p + 1
determinants obtained by replacing the elements of the (Nk+1)th column of W
(k=0,1,...,p) by their derivatives with respect to w;, the second derivative
of det(W) with respect to w is obtained from applying the replacement to
each determinant in the derivative of det(W) and sc on. Therefore

N
(22) wlé(p+1)(3p+2Q) H(w% — w?) P+

i
i=2
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is a factor of det(W). Repeat the above procedure to det{(W) for each wy and
then get other factors of it,

N
(23) wé<p+1)(3p+2q> H (w2 —w2)®*  for k=23,...,N.

i=k+1
Thus, the determinant, det(W), has a factor
N o N
(24) H wE(p+1)(3p+2q) H (w,% _ w?)(pﬂ)2
k=1 i=k+1
so that its degree in all wy, is at least
(25) N (p 41+ N(p+1)(5p+a-1)

which is calculated from

(26) Sist (3(p+1)(3p+29) + 2(p + 12N — k).

On the other hand, a direct calculation of the determinant of W shows that
the degree of det(W) in all wy, is exactly the same as (25). Let us explain such
a fact. We first take wz out of each column Wi between the first column and
the Nth column of the det(WW) and at the same time w7 out of each column

W,E’) between the (IVj+ 1)th column and the N(j+ 1)th column of the det(W)
for each 5 = 1,2,...,p— 1. This step brings that the exponents, depending on
rows of W, become all same. That is, all components of the first row of W have
an exponent g, the second row’s components do all ¢ + 2, and so on. So the
degree of det(W) in all wy becomes

P N(p+1)-1

(27) N> k+ Y (q+2k),
k=1 k=0
resulting in (25). Therefore, we finally have
N N
1
(28) det(W) = B [Twi ™00 T (wi - wd)®+0,
k=1 i=k-+1

where [ is a constant which is independent of wy, wa, ..., wyn. The result given

in (28) reveals that the value of det(W) is not zero as long as all wi(# 0)
are distinct. Returning to the first equation of (14), let us discuss whether
or not the value of the determinant of M, can be zero. When p is odd, that
isp=2u—1(u=12,...), expand the determinant of M, according to the
(N +1), (B3N +2), ..., (pN + p)th column of the matrix M,, respectively,
and then only one minor whose size is (p + 1})N X (p + 1)N survives while the
other minors all vanish. The survived minor is exactly the same, up to nonzero
constant, when wy = k and ¢ = 2 in the determinant of W. When p is even,
p=2u(u=1,2,...), expand the determinant of M, according to the (N +1),
(B3N +2), ..., ((p — 1)N + p)th column of the matrix M,, respectively. The
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same arguments as the case of odd p come from when wy = k and ¢ = 1 in the
determinant of W. So far the fact that the determinant of M, in (15) is not

zero, irrespective of p, has been established.
On the other hand, in the second equation of (14), we have
(29)

1 T | 1 ... 1 ... 0
0 12 ... N2 2.1 ... 2-N ... 0
M, =
PO gO e g g g
where, for k=1,2,...,Nand j=1,2,...,p,
(i) p = odd
V(O) — k2N(p+1)+p—1,
o= @NE+1)+p-1ENp+1)+p-2)

- (2N(p+1) +p — RN PP,
(i) p = even
VO = el
7P = @Np+1)+p)@Np+1)+p-1)
2N+ +p—- (G- 1))k2N(p+1)+p—j_
As might be expected,

g _f0 (G=02--,p-1) ifp=odd
0 0 (j=0,2,---,p) if p = even.

Compared with the forms of X, Y also has two different forms in the second

equation of (14), depending on p, that is, for odd p,
(30)
Y= (of of ... of ol el aP”

and for even p,
1)
- - +
Y= (of of ... af agl) aﬁ&’ a(lp)
In turn, 7} is given by
s Tn={@ W .. (Nt)PNtL+p=1)T - if p = 0dd,
€ (1 (Nt)2 ... (Nt)2Neth)+eT if p = even.

ag\lr?)_ )T

k]

,
o )T

Some other arguments involving the first equation of (14) are similarly stated
about the second equation of (14) as follows. For odd j, there is not any column

in the matrix M, corresponding to the component af)j )" because o

()~
0

(in fact,

a(()j )) does not appear in Y. But, there exist columns in M, corresponding to

oM

for even j. Likewise, by similarly taking the procedures to expand the
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determinant of M, the same conclusion as the case of M, is obtained for the
linear equation associated with M. from the following substitutions into the
matrix W:

(i) for odd p, wx =k and ¢ =1,

(ii) for even p, wy = k and g = 2.
Hence each linear system of (14) has the unique solution, respectively. It im-
plies that all the coefficients oy and a( of the rule (1) can be determined by
algebraically manipulating the relatlons given in (8). Next section, an example
case will be given and investigated.

3. Discussion

Let us consider the interpolation rule I in (1) for the case of N = 1 and
p = L. Section 2 says that

111 a t
33 M,=|103], X=|a" | 1T=[2¢
nt 5
105 oV t

and
110 o 1
349 Me=(012]|, Y= o |, T.=|¢
0 1 4 ol t

From solving the two linear systems,
M, X =T, and M.Y = Te7

respectively, the interpolation rule (1) becomes
1
I(t) = JA+3)E~-1)f(mo—h) + (t+1)°(t—1)f(=0)
(35) + it2(4 —36)(t+1)2f(zo + h) + ith(t + 1)t~ 1)2f V(2o — h)

+ ht(t+ 12t — 1)2fD(z) + iht2(t — D+ 12D (zg + h),

where all the coefficients of the rule are computed from Egs. (8). In fact, the
classical interpolating polynomial, say Ps, of degree at most five agreeing with
f and fQ) at three nodes 2o — h, ¢ and zo + h, can be constructed by the
general interpolation theories introduced in Chapter 3 of [6] which was due
to Hermite. In order to construct the classical interpolating polynomial, the
Hermite theories guide us to follow two steps: one is to express the remainder
of the interpolating polynomial for a given function by a line integral and the
other is to evaluate the line integral by residues. Through the steps,

(36) Py(z) = ZZ F9) () (@ = 22)%(@ — 22)% (& — 23)° Zc(k) z — 2)t,

1 —
k=1;—=0 @ = 2,)? s=0
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where
(37) zn=x9g—h, 2z9=x0, 23=x0+h,
c(l) _ 1 c(l) _ _ 2(z;—z3)+(s1—22)
0 7 (z1—22)2(z1—23)2? 1 7 (z1—22)%(21~23)3?
(38) 0(2) 1 C(2) _ 2(za—23)+(22—21)
Y (z2—71)%(22—23)27 "1 = (z2—21)3(22—~23)3
Do 18 2e—zm)t(amzy)
0 (z3—21)%(23—22)?? 1 (z3—z1)3(23—~22)% "

After first substituting all z; and i of (37 ) and (38) into the right hand side
of (36) and then rearranging it, Ps(x) becomes

— (zg 2
(1+%(x—(xo-h)))<(x_x0)(zh2( +h))> flzo—h)
+ ((x — (o — h)})L(Qx — (mo +h))> f(z0)

2
39) 4= G n) (ERTRETI

(330+h

+z = (a0 — ) ((””‘m o)tz ) o — by
o) (L INE (00 T h)))2 F D (z0)
)

hZ

.’II—IO

+(z — (20 + h)) ((m — (”“”0 FO(zo + h).

By using the change of variables,
(40) T = x¢ + ht,

the interpolating polynomial Ps(z), defined on [xg — h, 2o + h], is transformed
into the ¢{-dependent rule I(¢) given in (35). Also, the rule I(¢) can be linearly
transformed into the classical interpolating polynomial. Such transformations
make sense from the existence and uniqueness of the Hermite interpolating
polynomial because we have

(41)

Ps(zo — h) = f(zo — h),  Ps(wo) = f(wo),  Ps(wo+h) = fxo+ h),

P (2o — ) = FD (20 — b),PM (20) = FP (o), PV (w0 + h) = f D (zo + h),

from the relation I(t) = Ps(xzg + ht).

The general Hermite interpolation theories were established using Cauchy
integral formulas and residue theorems while we only use matrix computations
and simple algebraic calculations with Eqs.(8) to get the t-dependent interpo-
lation rule I. Once the rule I is obtained, in other words, the coefficients
and agf ) of the rule are determined and expressed in terms of the parameter
t, it is itself an interpolation rule and simultaneously it is expected to be seen
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that the rule is linearly transformed into the classical Hermite interpolating
polynomial through the relation of the change of the variables given in (40) as
we test the example case this section.
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