• Title/Summary/Keyword: system standby power

Search Result 106, Processing Time 0.029 seconds

Single-Inductor, Multiple-Input-Single-Output Converter Based Energy Mixer for Power Packet Distribution System

  • Reza, C.M.F.S.;Lu, Dylan Dah-Chuan;Qin, Ling;Qi, Jian
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1479-1488
    • /
    • 2018
  • Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.

Analysis on Application of Flywheel Energy Storage System for offshore plants with Dynamic Positioning System

  • Jeong, Hyun-Woo;Kim, Yoon-Sik;Kim, Chul-Ho;Choi, Sung-Hwan;Yoon, Kyoung-Kuk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.7
    • /
    • pp.935-941
    • /
    • 2012
  • This paper describes a study of conventional electrical rig and simulated application of Flywheel Energy Storage system on the power system of the offshore plants with dynamic positioning system with the following aims: improve fuel consumption on engines, prevent blackout and mitigate voltage sags due to pulsed load and fault. Fuel consumption has been analyzed for the generators of the typical drilling rigs compared with the power plant with Flywheel Storage Unit which has an important aid in avoiding power interruption during DP (Dynamic Positioning) operation. The FES (Fly wheel Energy storage System) releases energy very quickly and efficiently to ensure continuity of the power supply to essential consumers such as auxiliary machinery and thrusters upon main power failure. It will run until the standby diesel generator can start and supply the electric power to the facilities to keep the vessel in correct position under DP operation. The proposed backup method to utilize the quick and large energy storage Flywheel system can be optimized in any power system design on offshore plant.

Development and Performance Analysis of an Effective Smart Plug System based on K10026 Regulation (K10026 기반 스마트 플러그 시스템 개발 및 성능 분석)

  • Chung, Han-Su;Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.5
    • /
    • pp.287-298
    • /
    • 2016
  • This paper proposes an effective smart plug system capable of monitoring power, cutting off standby power and overload current. The key design concept is focused on measurement accuracy, self power consumption and controlling via smart phone application. The system is composed of several plugs and a hub, and adopts a star-topology-styled TDMA wireless protocol for communication between plug and hub. The test result shows that the implemented smart plug system meets K10026 regulation and is worth in electrical safety, energy saving, easy living.

Dynamic Voltage Compensator using Series and Shunt Inverters (직.병렬 인버터를 이용한 동적전압보상기)

  • Park, Deok-Hui;Lee, Jun-Gi;Han, Byeong-Mun;So, Yong-Cheol;Kim, Hyeon-U
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.655-662
    • /
    • 1999
  • This paper describes controller design and simulation-model development of a dynamic voltage compensator using series and shunt inverters. The control system was designed using PI controller and vector relationship between the supply voltage and load voltage. A simulation model with EMTP was developed to analyze performance of the controller and the whole system. The simulation and experiment results confirm that the dynamic compensator can restore the load voltage under the fault of the distribution system, such as single-line-ground fault, three-line-to-ground fault, and line-to-line fault.

  • PDF

A High Quality Battery Charge-Discharge Controller for New & Renewal Energy Power Generation System (Focusing on Sun-tracking Solar Power Generation System) (신재생에너지 발전 시스템을 위한 고 품위 축전지 충방전 컨트롤러 (추적식 태양광 발전시스템을 중심으로))

  • Lee, Jae-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.4
    • /
    • pp.258-263
    • /
    • 2011
  • In this paper, a high quality battery charge-discharge controller for new & renewal energy power generation system is designed. The proposed new controller has a function to manipulate the battery charging current precisely and it is suitable for various batteries including Lead-Acid battery generally used for solar power generation system. LCD display function is implemented to enhanced the user's convenience and minimization of standby power consumption is realized by optimal design using CAD tools.

Secondary Side Regulator for reduced standby power and accurated output voltage regulator control (대기전력저감 및 정확한 출력전압 제어가 가능한 Secondary Side Regulator)

  • Kim, Soo-San;Heo, Tae-Won;Choi, Heung-kyun;Kim, Hugh;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.353-354
    • /
    • 2014
  • 본 논문은 대기전력저감 및 정확한 출력전압 제어가 가능한 새로운 방식의 SSR(Secondary Side Regulator) 회로를 제안한다. 제안방식은 기존의 1차 측 IC를 2차 측으로 옮김으로써 기존의 SSR의 장점인 정확한 출력전압의 제어가 가능하다는 점과 포토커플러 및 TL431을 사용하지 않는 방식이므로 대기전력저감 측면에 있어 유리한 장점을 갖는다. 또한 절연된 1-2차 측간 신호전송방법에 있어 사이즈가 작고 가격이 저렴한 CT(Current Transformer)를 사용하여 Pulse edge의 전달을 통해 제어를 한다. 제안회로의 타당성 검증을 위하여 이론적 해석과 10W 급 플라이백 컨버터의 실험결과를 통해 증명하였다.

  • PDF

Implementation of Automatic Power Management System using the Arduino and Beacons (아두이노와 비콘을 활용한 자동 전원 관리 시스템의 구현)

  • Kang, Bong-Gu;Yeo, Junki;Shim, Jaechang
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1471-1478
    • /
    • 2016
  • In this study, the system to manage the power automatically was implemented by using Arduino, Raspberry pi, and Beacon technologies. Before the research, pre-research was carried out with the analysis on the existing power management systems in the market in order to find a solution to reduce burdens from standby power and power waste with the increase of electric charges. The system is designed to be able to deliver and receive data through IEEE 802.15.4 wireless protocol, by using Xbee module. Arduino was tested to verify whether it is able to control SSR(Solid State Relay), and it was found that there is no problem. Meanwhile, it was also tested whether it is possible to organize a star topology network through Arduino and Raspberry Pi, and it was confirmed that normal wireless communication is possible through IEEE 802.15.4 wireless protocol. It is designed that the signal from Android smartphone application is to be delivered to Raspberry Pi and then, to be delivered to Arduino through Xbee so that Arduino could control SSR. In addition to this, wireless protocol required to control Arduino with Raspberry Pi is also designed and applied to this research.

Analysis and Evaluation Study on Diesel Generator Engine Operation Signature (디젤발전기 엔진 운전상태 분석 및 평가방법에 대한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.
    • Journal of Power System Engineering
    • /
    • v.13 no.5
    • /
    • pp.82-88
    • /
    • 2009
  • The purpose of this paper is to provide technical background, techniques and actual diesel engine signature analysis evaluation result. Engine signature analysis(ESA) is a process for monitoring the material condition of diesel engine using external sensors, eliminating the need to periodically disassemble the engine. ESA is also used to balanced the engine. Engine balancing is the process of tuning the engine so that all cylinders carry equal load. ESA is a useful tool to non-intrusively determine the operability and performance and assessment of the material condition of internal component of a diesel engine.

  • PDF

Coreless Electronic Transformer (코어없는 전자식 트랜스포머)

  • Seo, J.H.;Kim, M.G.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.168-174
    • /
    • 2005
  • A coreless electronic transformer is proposed. Conventional iron cored transformer is heavy and bulky and it has substantial amount of no load loss. On the other hand, electronic transformer can be made of negligible no load loss and is small size and lightweight. It consists of rectifier and PWM inverter. Electronic transformer is easily modeled to conventional Buck converter; therefore, output voltage is controlled by duty ratio. It is thought to be suitable for applications where the operation duty is low. In this paper, a novel coreless transformer is proposed, then it's detailed analysis, simulative and experimental results are presented

  • PDF

Grid Peak Power Limiting / Compensation Power Circuit for Power Unit under Dynamic Load Profile Conditions (Dynamic Load Profile 조건의 전원 장치에 있어서 계통 Peak Power 제한/보상 전력 회로)

  • Jeong, Hee-Seong;Park, Do-Il;Lee, Yong-Hwi;Lee, Chang-Hyeon;Rho, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.376-383
    • /
    • 2022
  • The improved performance of computer parts, such as graphic card, CPU, and main board, has led to the need for power supplies with a high power output. The dynamic load profile rapidly changes the usage of power consumption depending on load operations, such as PC power and air conditioner. Under dynamic load profile conditions, power consumption can be classified into maximum, normal, and standby power. Several problems arise in the case of maximum power. Peak power is generated at the system power source in the maximum-power situation. Frequent generation of peak power can cause high-frequency problems and reduce the life of high-pressure parts (especially high-pressure capacitors). For example, when a plurality of PCs are used, system overload occurs due to peak power generation and causes problems, such as power failure and increase in electricity bills due to exceeded contract power. To solve this problem, a system peak power limit/compensation power circuit is proposed for a power supply under dynamic load profile conditions. The proposed circuit detects the system current to determine the power situation of the load. When the system current is higher than the set level, the circuit recognizes that the system current generates peak power and compensates for the load power through a converter using a super capacitor as the power source. Thus, the peak power of loads with a dynamic load profile is limited and compensated for, and problems, such as high-frequency issues, are solved. In addition, the life of high-pressure parts is increased.