• Title/Summary/Keyword: system lifetime

Search Result 833, Processing Time 0.029 seconds

The Power Supply System for Xenon Lamp Light Sintering (광소결용 제논 램프 구동을 위한 파워 서플라이 시스템)

  • Cho, Chan-Gi;Song, Seung-Ho;Park, Su-Mi;Park, Hyeon-Il;Bae, Jung-Soo;Jang, Sung-Roc;Ryoo, Hong-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.327-328
    • /
    • 2017
  • This paper presents the power supply system which is made of three units: the capacitor charging and main pulse unit, simmer power supply unit, and series trigger unit. The capacitor charging and main pulse unit charges the capacitor bank by using the series parallel resonant converter and the generated main pulses apply to the lamp. The series trigger unit ionize the xenon gas located in the lamp and the simmer power supply unit sustains the ionized condition. It means that the lamp lifetime and efficiency are advanced by reducing the number of triggering. Not only the operation of the proposed system but also the performance of each unit will be verified by the experimental results.

  • PDF

Weatherability Assessment of Nonwoven Geotextiles by Field Exposure Test (현장노출시험에 의한 부직포 지오텍스타일의 내후성 평가)

  • Jeon, Han-Yong;Yuu, Jung Jo;Kim, Young Yoon;Byun, Sung Weon;Byun, Sung Weon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.37-42
    • /
    • 2004
  • In the reinforced retaining wall system, non-woven geotextiles are placed at the face of reinforced earth until the facing blocks are built up. And when this system is used as temporary structure, geotextiles facings are exposed to sunlight during service lifetime. During these periods, degradation of nonwoven geotextiles are occurred by UV light. So the UV-resistance of nonwoven geotextiles must be assessed correctly, in considering of the site conditions. In this study, laboratory test and the field test have been performed to evaluate the UV resistance of non-woven geotextiles used in KOESWall system and the results are expressed in terms of tensile characteristics & SEM photographs.

  • PDF

A Takagi-Sugeno fuzzy power-distribution method for a prototypical advanced reactor considering pump degradation

  • Yuan, Yue;Coble, Jamie
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.905-913
    • /
    • 2017
  • Advanced reactor designs often feature longer operating cycles between refueling and new concepts of operation beyond traditional baseload electricity production. Owing to this increased complexity, traditional proportional-integral control may not be sufficient across all potential operating regimes. The prototypical advanced reactor (PAR) design features two independent reactor modules, each connected to a single dedicated steam generator that feeds a common balance of plant for electricity generation and process heat applications. In the current research, the PAR is expected to operate in a load-following manner to produce electricity to meet grid demand over a 24-hour period. Over the operational lifetime of the PAR system, primary and intermediate sodium pumps are expected to degrade in performance. The independent operation of the two reactor modules in the PAR may allow the system to continue operating under degraded pump performance by shifting the power production between reactor modules in order to meet overall load demands. This paper proposes a Takagi-Sugeno (T-S) fuzzy logic-based power distribution system. Two T-S fuzzy power distribution controllers have been designed and tested. Simulation shows that the devised T-S fuzzy controllers provide improved performance over traditional controls during daily load-following operation under different levels of pump degradation.

A Study on Accelerated Life Testing Model and Design (헬기용 와이퍼 조립체의 가속모델 및 가속수명시험 설계 연구)

  • Kim, Daeyu;Hur, Jangwook;Jeon, Buil
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.894-903
    • /
    • 2018
  • In the case of helicopters, the development of parts technology is rapidly changing, and the complexity is rapidly increasing. Particularly, the surge of various electric and electronic systems is recognized as a problem that is directly related to the safety of the helicopter. Due to these problems, there is a growing interest in reliability evaluation in the face of the problem of confirming and certifying the reliability of parts in the development stage. In this paper, the analysis of the failure mechanism of the wiper system was carried out, and the priority and importance of each failure mode were checked by using the results, and major stress factors were derived and the corresponding acceleration model was selected. Also, the accelerated lifetime test time was calculated according to the life test time, acceleration status and acceleration level of the steady state by using the selected acceleration model and characteristic values.

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.3
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

Radiation tolerance of a small COTS single board computer for mobile robots

  • West, Andrew;Knapp, Jordan;Lennox, Barry;Walters, Steve;Watts, Stephen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2198-2203
    • /
    • 2022
  • As robotics become more sophisticated, there are a growing number of generic systems being used for routine tasks in nuclear environments to reduce risk to radiation workers. The nuclear sector has called for more commercial-off-the-shelf (COTS) devices and components to be used in preference to nuclear specific hardware, enabling robotic operations to become more affordable, reliable, and abundant. To ensure reliable operation in nuclear environments, particularly in high-gamma facilities, it is important to quantify the tolerance of electronic systems to ionizing radiation. To deliver their full potential to end-users, mobile robots require sophisticated autonomous behaviors and sensing, which requires significant computational power. A popular choice of computing system, used in low-cost mobile robots for nuclear environments, is the UP Core single board computer. This work presents estimates of the total ionizing dose that the UP Core running the Robot Operating System (ROS) can withstand, through gamma irradiation testing using a Co-60 source. The units were found to fail on average after 111.1 ± 5.5 Gy, due to faults in the on-board power management circuitry. Its small size and reasonable radiation tolerance make it a suitable candidate for robots in nuclear environments, with scope to use shielding to enhance operational lifetime.

Complementary and Alternative Medicine for treating Low Back Pain with Teaching Exercise: A narrative review

  • Kim, Yeonhak;Yang, Gi-Young
    • The Journal of Korean Medicine
    • /
    • v.41 no.4
    • /
    • pp.78-87
    • /
    • 2020
  • Objectives: In modern society, many people have low back pain (LBP) and spinal diseases. About 80% of them experience severe LBP more than once in their lifetime. We can find studies on many Korean medicine-based treatments, such as acupuncture treatment for LBP and exercise therapy, which are effective in reducing the symptoms. This study focuses on the combined effect of both Korean medicine and exercise therapy for treating LBP. Method: For this review, we searched for articles focusing on pain and disability recovery in pre-clinical and clinical studies of extension and flexion exercise therapy related to LBP. The search databases were as follows: PubMed, Google Scholar, and seven Korean electronic databases (Korea Citation Index (KCI), Korean studies Information Service System (KISS), Research Information Service System (RISS), Oriental Medicine Advanced Searching Integrated System (OASIS), DBPIA, National Digital Science Library (NDSL), and KOREAMED). The keywords were as follows: Korean Medicine, back pain, flexion exercise, extension exercise, McKenzie method, McKenzie exercise, Williams' flexion exercise, and Mechanical Diagnosis and Therapy. Results & Conclusions: This review shows the usefulness of flexion and extension exercises for LBP treatment and effective patient education, but further studies are necessary.

Life Test Design and Evaluation of Inertial Measurement Unit for Guided Weapons (유도무기용 관성측정기 수명 시험 설계 및 평가)

  • Jo, Kyoung Hwan;Moon, Sang Chan;Yun, Suk Chang;Kwon, Seung Bok;Kim, Do Hyung;Yang, Il Young
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.94-101
    • /
    • 2022
  • In this paper, we have obtained the acceleration coefficient of the IMU (Inertial Measurement Unit) to prove reliability by analyzing the characteristic of the MEMS IMU installed in guided weapon systems for overseas export and the operating environment of the guided weapon system. Additionally, based on designed life testing, we performed life tests on three the IMUs and demonstrated a target lifetime of 12 years.

A wireless sensor with data-fusion algorithm for structural tilt measurement

  • Dan Li;Guangwei Zhang;Ziyang Su;Jian Zhang
    • Smart Structures and Systems
    • /
    • v.31 no.3
    • /
    • pp.301-309
    • /
    • 2023
  • Tilt is a key indicator of structural safety. Real-time monitoring of tilt responses helps to evaluate structural condition, enable cost-effective maintenance, and enhance lifetime resilience. This paper presents a prototype wireless sensing system for structural tilt measurement. Long range (LoRa) technology is adopted by the sensing system to offer long-range wireless communication with low power consumption. The sensor integrates a gyroscope and an accelerometer as the sensing module. Although tilt can be estimated from the gyroscope or the accelerometer measurements, these estimates suffer from either drift issue or high noise. To address this challenging issue and obtain more reliable tilt results, two sensor fusion algorithms, the complementary filter and the Kalman filter, are investigated to fully exploit the advantages of both gyroscope and accelerometer measurements. Numerical simulation is carried out to validate and compare the sensor fusion algorithms. Laboratory experiment is conducted on a simply supported beam under moving vehicle load to further investigate the performance of the proposed wireless tilt sensing system.

Embedded EM Sensor for Tensile Force Estimation of PS tendon of PSC Girder (PS 긴장재 긴장력 계측을 위한 PSC 거더 내부 매립용 EM 센서)

  • Park, Jooyoung;Kim, Junkyeong;Zhang, Aoqi;Lee, Hwanwoo;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.691-697
    • /
    • 2015
  • In this paper, an embedded EM sensor was researched to estimate prestressing force of PS tendon in PSC girder. Recent methodologies for managing prestressing force loss were staying on verifying a applying prestressing force under construction, namely the loss management can not be controlled after construction. To estimate the tensile force of PS tendon during lifetime of PSC girder, this research proposed a bobbin-type embedded EM sensor that can be embedded in PSC girder is designed and fabricated considering the shape properties of anchorage zone and sheath. To verify the proposed sensor, a small PSC girder test was performed. The embedded EM sensor was connected to a sheath and anchor block, and the concrete was poured. After curing, the change of the permeability of PS tendon under tensile forces of 200, 710, 1070, 1300kN was measured using embedded EM sensor. The permeability of PS tendon had decreased according to the increment of applied tensile force. Also it is confirmed that the change of permeability due to applied tensile force could resolve the applied tensile force values. As a result, proposed embedded EM sensor could be embed into the PSC girder and it could be used to estimate the tensile force variation during lifetime of PSC girder.