• Title/Summary/Keyword: system analysis and design

Search Result 14,966, Processing Time 0.037 seconds

Development and Application of a Web-based Expert System using Artificial Intelligence for Management of Mental Health by Korean Emigrants (해외 이민 한국인의 정신건강관리를 위한 웹기반 지능형 전문가시스템 개발 및 적용)

  • Bae, Jeongyee
    • Journal of Korean Academy of Nursing
    • /
    • v.43 no.2
    • /
    • pp.203-214
    • /
    • 2013
  • Purpose: The purpose of this project was to develop an international web-based expert system using principals of artificial intelligence and user-centered design for management of mental health by Korean emigrants. Using this system, anyone can access the system via computer access to the web. Methods: Our design process utilized principles of user-centered design with 4 phases: needs assessment, analysis, design/development/testing, and application release. A survey was done with 3,235 Korean emigrants. Focus group interviews were also conducted. Survey and analysis results guided the design of the web-based expert system. Results: With this system, anyone can check their mental health status by themselves using a personal computer. The system analyzes facts based on answers to automated questions, and suggests solutions accordingly. A history tracking mechanism enables monitoring and future analysis. In addition, this system will include intervention programs to promote mental health status. Conclusion: This system is interactive and accessible to anyone in the world. It is expected that this management system will contribute to Korean emigrants' mental health promotion and allow researchers and professionals to share information on mental health.

Effects of the Component Structures on the Vibration of the Total system Using Design Sensitivity Analysis (설계 민감도를 이용한 부분 구조물의 기여도 분석)

  • Lee, Sun-Byung;Yim, Hong-Jae;Kim, Hyo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.533-539
    • /
    • 2001
  • In this research, design Sensitivity Analysis is presented for commercial vehicle such as large scale structural system. The proposed method is based on vibration analysis of the total structure and design sensitivity to identify the contribution factor of the component structure to the total system structure. In addition, approximated equations derived from response surface method are used for representative section properties of the thin walled beams.

  • PDF

Toward the Efficient Integration of Travel Demand Analysis with Transportation Network Design Models (교통수요예칙과 가로망설계의 효율화)

  • 이인원
    • Journal of Korean Society of Transportation
    • /
    • v.1 no.1
    • /
    • pp.28-42
    • /
    • 1983
  • In recent years, significant advances have been made enabling travel demand analysis and network design methods to be used as increasingly realistic evaluation tools. What has been lacking is the integration of travel demand analysis with network design models. This paper reviews some of advanced (integrated) modeling approaches and presents future research directions of integrated modeling system. To design urban transportation networks, it is argued that the travelers' free choice of mode, destination and route should be introduced into transportation network design procedure instead of assuming that trips from a zone to a workplace are fixed or deriving them in a normative procedure to achieve hypothetical system optima.

  • PDF

Design and Verification of Electrical System for Unmanned Aerial Vehicle through Electrical Load Power Analysis (전원부하분석을 통한 무인항공기 전기시스템 설계 및 검증)

  • Woo, Heechae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.675-683
    • /
    • 2018
  • In this paper, we have proposed a design and verification methods of electrical system and power loads for unmaned aeriel vehicles(UAVs) through electrical load analysis. In order to meet a UAV system requirement and electrical system specifications, we have designed an electrical power system for efficient power supply and distribution and have theoretically analyzed the power loads according to the power consumption and power bus design of UAV. Using electrical system rig, the designed electrical power system has been experimentally verified. Also, we have performed several flight tests to verify the UAV electrical system and power loads. It is concluded that the proposed design and verification method of electrical system for UAV system.

An Optimal Design of the Front Wheel Drive Engine Mount System (전륜구동형 승용차의 엔진마운트 시스템 최적설계)

  • Kim, M.S.;Kim, H.S.;Choi, D.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.74-82
    • /
    • 1993
  • Optimal designs of a 3-point and a 4-point engine mount system are presented for reducing the idle shake of a Front Wheel Drive(FWD) vehicle. Design variables used in this study are the locations, the angles and the stiffness of an engine mount system. The goal of the optimization is minimizing the transmitted force without violating the constraints such as static weight sag, resonant frequency and side limits of design variables. The Augmented Lagrange Multiplier(ALM) Method is used for solving the nonlinear constrained optimization. The generalized Jacobi and the impedence method are employed for a free vibration analysis and a forced response analysis. The trend of analysis results well meet that of the experimental results. The optimization results reveal that the 4-point system transmits less torque than the 3-point system. It is also found from the design sensitivity analysis that the vibration characteristics of the 4-point system is less sensitive than those of the 3-point system.

  • PDF

Development of System and Cost Function Model for Life Cycle Cost Analysis of Bridge (교량의 생애주기비용 분석을 위한 비용함수 모델 및 시스템 개발)

  • Park Mi-Yun;Sun Jong-Wan;Eom In-Soo;Cho Hyo-Nam
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.704-711
    • /
    • 2005
  • Recently Life Cycle Cost Analysis for civil infrastructures such as pavements, bridges, and dams has been emphasized However, so far, there are few systems available for life cycle cost analysis of bridges at design stage. Therefore, the objective of this paper is to develop a user-friendly life-cycle cost analysis system for LCC-effective optimal design decision making at design stage. The program is based on the proposed LCC model, formulation, analysis modules and systematic procedure that suit Korean construction conditions. It is expected that the developed system can be effectively utilized for more LCC-effective design of bridges. It is applied to an actual bridge design project in order to demonstrate its effectiveness and applicability.

  • PDF

Numerical Study on Evaluation of Design Parameters of Intermediate Shaft in Steering System (조향장치용 인텀 샤프트 설계변수 평가를 위한 수치적 연구)

  • Kang, Young Su;Doo, Min Soo;Kim, Jeong;Kang, Beom Soo;Song, Woo Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1351-1359
    • /
    • 2012
  • Due to the development of electric and hybrid vehicles, the trend has changed from hydraulic power steering system to electric power steering system (EPS). In this paper, design parameters are deduced through the structural analysis based on the finite element analysis for the intermediate shaft of the EPS on the market. By analyzing the design parameters, the structure design is improved to support the required high torque on the EPS. The numerical analysis is performed to obtain the improved design of the intermediate shaft model and the analysis results are compared with the existing model. It is noted through this numerical approach that the improved design of the intermediate shaft can be acquired the structural safety and high stiffness than existing model.

Extraction of Design Parameters through Electromagnetic and Dynamic Analysis of Slotless Double-side PMLSM system (양측식 영구자석 가동형 슬롯리스 직선 동기전동기의 전자기 특성 및 동특성 해석에 의한 설계정수 도출)

  • Jang, Won-Bum;Lee, Sung-Ho;Jang, Seok-Myeong;You, Dae-Joon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2135-2144
    • /
    • 2007
  • This paper presents system design of the slotless double-side Permanent Magnet Linear Synchronous Machine system (PMLSM) through magnetic field analysis and dynamic modeling. In our analysis, 2-D analytical treatments based on the magnetic vector potential were adopted to predict magnetic field with space harmonics by PM mover magnetization and stator winding current. From these, the design parameters such as inductance, Back-emf, and thrust are estimated. And, the electrical dynamic modeling including synchronous speed is completed by calculation of a DC link voltage in effort to obtain the accurate mechanical power from Space Vector Pulse Width Modulation(SVPWM). Therefore, the system design of PMLSM is performed from estimation of design parameters according to PM size and coil turns in magnetic field and from calculation of a DC link voltage to satisfy base speed and base thrust represented as the maximum output power in dynamic modeling. The estimated values from the analysis are verified by the finite element method and experimental results.

Design and Reliability Analysis of Concurrent System by Petri Nets: A Case on Lift System (패트리네트를 이용한 병행 시스템의 설계 및 신뢰성 분석 : 승강기 시스템을 중심으로)

  • 김기범;이강수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.1-7
    • /
    • 1993
  • In this paper, we show that Petri nets can be applied to design and reliability analysis of concurrent, parallel and embedded mode system such as a lift system that is familiar to our daily life. Modeling the behavioral characteristics of the lift system we extend the standard Petri nets by nadditionally constant timed transition, fault transition, stochastic imed ttransition and conditional transition concepts. Likewise, we present esults of rdesign and analysis of the system. This method can be applied to esign and danalysis of any other concurrent systems.

  • PDF

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF