• Title/Summary/Keyword: synthetic variety

Search Result 209, Processing Time 0.026 seconds

Applying the basic knowledge about regulation of pigmentation towards development of strategies for cutaneous hypopigmentation

  • Abdel-Malek, Zalfa A.
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.3
    • /
    • pp.7-39
    • /
    • 2002
  • The extensive variation in human cutaneous pigmentation is mainly due to differences in the rate of melanin synthesis by epidermal melanocytes, the relative amounts of eumelanin and pheomelanin synthesized, and the manner and rate of transfer of melanosomes from melanocytes to keratinocytes. Pigmentation is a complex trait that is regulated genetically and environmentally. One gene that has been receiving a lot of attention is the gene for the melanocortin 1 receptor The extensive polymorphism of this gene in human populations suggests its significance in the diversity of pigmentation. Exposure to solar ultraviolet radiation (UV) results in increased synthesis of a variety of growth factors, cytokines and hormones, and in modulation of their receptors in the epidermis. Knowledge about the regulation of pigmentation has led to strategies for clinical treatment of hyperpigmented skin lesions. Three main strategies are: 1) the use of chemicals that interfere with the melanin synthetic pathway, 2) the design of peptides or peptide-mimetics based on the structure of hormones that regulate eumelanin synthesis, and 3) the use of agents that reduce melanosome transfer from melanocytes to keratinocytes. All three strategies are expected to induce hypopigmentation, by inhibiting total melanin synthesis, eumelanin production, or the epidermal melanin unit, respectively.

Evaluation of Porous PLLA Scaffold for Chondrogenic Differentiation of Stem Cells

  • Jung, Hyun-Jung;Park, Kwi-Deok;Ahn, Kwang-Duk;Ahn, Dong-June;Han, Dong-Keun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.268-268
    • /
    • 2006
  • Due to their multipotency, stem cells can differentiate into a variety of specialized cell types, such as chondrocytes, osteoblasts, myoblasts, and nerve cells. As an alternative to mature tissue cells, stem cells are of importance in tissue engineering and regenerative medicine. Since interactions between scaffold and cells play an important role in the tissue development in vitro, synthetic oligopeptides have been immobilized onto polymeric scaffolds to improve specific cell attachment and even to stimulate cell differentiation. In this study, chondrogenic differentiation of stem cells was evaluated using surface-modified PLLA scaffolds, i.e., either hydrophilic acrylic acid (AA)-grafted PLLA or RGD-immobilized one. Porous PLLA scaffolds were prepared using a gas foaming method, followed by plasma treatment and subsequent grafting of AA to introduce a hydrophilicity (PLLA-PAA). This was further processed to fix RGD peptide to make an RGD-immobilized scaffold (PLLA-PAA-RGD). Stem cells were seeded at $1{\times}10^{6}$ cells per scaffold and the cell-PLLA constructs were cultured for up to 4 weeks in the chondrogenic medium. Using these surface-modified scaffolds, adhesion, proliferation, and chondrogenic differentiation of stem cells were evaluated. The surface of PLLA scaffolds turned hydrophilic (water contact angle, 45 degrees) with both plasma treatment and AA grafting. The hydrophilicity of RGD-immobilized surface was not significantly altered. Cell proliferation rate on the either PLLA-PAA or PLLA-PAA-RGD surface was obviously improved, especially with the RGD-immobilized one as compared to the control PLLA one. Chondrogenic differentiation was clearly identified with Safranin O staining of GAG in the AA- or RGD-grafted PLLA substrates. This study demonstrated that modified polymer surfaces may provide better environment for chondrogenesis of stem cells.

  • PDF

Current Research Trends in Wood Preservatives for Enhancing Durability - A Literature Review on Non-Copper Wood Preservatives - (옥외 내구성 향상을 위한 목재보존제의 최근 연구 동향 -비 구리계 약제를 중심으로-)

  • Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.187-200
    • /
    • 2013
  • Current research trends of non-copper wood preservatives for enhancing durability was reviewed; as a follow-up of the review in 2012 on copper-based wood preservatives. Main environmental friendly non-copper wood preservatives studied by many scientists were boron-based compounds, synthetic compounds from natural products, and pyrethroids family of chemicals, etc. The critical issue regarding treated woods with boron-based compounds used outdoors was the leaching of boron. Many studies mainly focused on boron fixation improvement using variety of polymers. Moreover, the studies showed notable increases in attempts to use natural products used commonly in the medical fields as wood preservatives as well as outdoor use of chemical modified such as acetylated wood developed in purpose of stabilizing dimension.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

Behavior of Geotextile Tube for Erosion Control (침식방지를 위한 토목섬유튜브의 거동 분석)

  • Chang, Yong-Chai;Son, Ka-Young;Lee, Seung-Eun;Kim, Sang-Jin;Kim, Suk-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Geotextile tube method is the latest application process to construct a variety of civil structures such as river and coastal structures by using geotextile which is a high polymer synthetic fiber. In this paper, laboratory tests and field tests were conducted in order to identify the behavior, stability and application possibility of geotextile tube which prevents the erosion of coastal sand. As a result of large-scale direct shear test, which is one of laboratory tests, the increase in friction angle was shown as the relative density increased, and friction angle of sand/geotextile was larger than that of sand/sand. As a result of field test, the behavior and stability during construction and after construction were identified through measurement, and the effect of preventing erosion was confirmed.

Study on the Fabric Trend in Hi-Tech Functional Active Sportswear (하이테크 기능성 액티브 스포츠웨어의 소재경향에 관한 연구)

  • Baik Cheon-Eui;Kim So-Young
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.1
    • /
    • pp.55-63
    • /
    • 2005
  • The outcome of modem sports events are reliant on not only the athletic ability and technology of individual players but their sportswear proterties. State-of-the-Hitech sportswear has started to be introduced in the 1950s, and in addition to the athletic capability of players, sportswear is one of the primary factors to affect the results of sports games, as a wide variety of Hi-Tech functional materials have come out since the 1990s. The purpose of this study was to development into the concept of active sportswear, to sort out hitech functional product lines in this field, to look into sports stars and Hi-Tech functional sports brands, and finally to identify the major characteristics of recent active sportswear. The result of this study were as follows: 1. There were largely four characteristics in recent functional sportswear materials: fast-drying cooling, minimized resistance, ultralight comfortableness, and water vapor permeable/waterproof function. 2. Besides the athletic capability and technology of players, Hi-Tech functional products are one of the major factors to determine the outcome of modem sports events. Functional synthetic fiber is preferred, instead of cotton, since the former is easier to manage and retains humidity better. 3. The major features of recent trend in active sportswear products are, functional, diversity and value. That is, those products are functional, since they are easy to manage and retain proper humidity, and they are for multipurpose, since they are fashionable and practical at the same time. And they are valuable, being expensive but appropriate for the movement of the body and having a high quality.

  • PDF

Transcriptional Regulation of the AP-1 and Nrf2 Target Gene Sulfiredoxin

  • Soriano, Francesc X.;Baxter, Paul;Murray, Lyndsay M.;Sporn, Michael B.;Gillingwater, Thomas H.;Hardingham, Giles E.
    • Molecules and Cells
    • /
    • v.27 no.3
    • /
    • pp.279-282
    • /
    • 2009
  • "Two-cysteine" peroxiredoxins are antioxidant enzymes that exert a cytoprotective effect in many models of oxidative stress. However, under highly oxidizing conditions they can be inactivated through hyperoxidation of their peroxidatic active site cysteine residue. Sulfiredoxin can reverse this hyperoxidation, thus reactivating peroxiredoxins. Here we review recent investigations that have shed further light on sulfiredoxin's role and regulation. Studies have revealed sulfiredoxin to be a dynamically regulated gene whose transcription is induced by a variety of signals and stimuli. Sulfiredoxin expression is regulated by the transcription factor AP-1, which mediates its up-regulation by synaptic activity in neurons, resulting in protection against oxidative stress. Furthermore, sulfiredoxin has been identified as a new member of the family of genes regulated by Nuclear factor erythroid 2-related factor (Nrf2) via a conserved cis-acting antioxidant response element (ARE). As such, sulfiredoxin is likely to contribute to the net antioxidative effect of small molecule activators of Nrf2. As discussed here, the proximal AP-1 site of the sulfiredoxin promoter is embedded within the ARE, as is common with Nrf2 target genes. Other recent studies have shown that sulfiredoxin induction via Nrf2 may form an important part of the protective response to oxidative stress in the lung, preventing peroxiredoxin hyperoxidation and, in certain cases, subsequent degradation. We illustrate here that sulfiredoxin can be rapidly induced in vivo by administration of CDDO-TFEA, a synthetic triterpenoid inducer of endogenous Nrf2, which may offer a way of reversing peroxiredoxin hyperoxidation in vivo following chronic or acute oxidative stress.

Facile Synthesis of Pt Nanoparticle and Graphene Composite Materials: Comparison of Electrocatalytic Activity with Analogous CNT Composite

  • Lee, Jihye;Jang, Ho Young;Jung, Insub;Yoon, Yeoheung;Jang, Hee-Jeong;Lee, Hyoyoung;Park, Sungho
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1973-1978
    • /
    • 2014
  • Here, we present a facile method to synthesize Pt nanoparticles (NPs) and graphene composite materials (Pt/G) via vacuum filtration. Anodic aluminum oxide (AAO) templates were used to separate Pt/G composite and liquid phase. This method can be used to easily tune the mass ratio of Pt NPs and graphene. Pt NPs, graphene, and carbon nanotubes (CNTs) as building blocks were characterized by a variety of techniques such as scanning electron microscopy, UV-Vis spectroscopy, and Raman spectroscopy. We compared the electrocatalytic activities of Pt/G with Pt NP and CNT films (Pt/CNT) by cyclic voltammetry (CV), CO oxidation, and methanol oxidation. Pt/G was much more stable than pure Pt films. Also, Pt/G had better electrochemical activity, CO tolerance and methanol oxidation than Pt/CNT loaded with the same amount of Pt NPs due to the better dispersion of Pt NPs on graphene flakes without aggregation. We further synthesized Au@Pt disk/G and Pt nanorods/G to determine if our synthetic method can be applied to other NP shapes such as nanodisks and nanorods, for further electrocatalysis studies.

디지털 프린팅 용액 공정 소재 개발 동향

  • O, Seok-Heon;Son, Won-Il;Park, Seon-Jin;Kim, Ui-Deok;Baek, Chung-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.19.2-19.2
    • /
    • 2010
  • Printed electronics using printing process has broadened in all respects such as electrics (lighting, batteries, solar cells etc) as well as electronics (OLED, LCD, E-paper, transistor etc). Copper is considered to be a promising alternative to silver for printed electronics, due to very high conductivity at a low price. However, Copper is easily oxidized, and its oxide is non-conductive. This is the highest hurdle for making copper inks, since the heat and humidity that occurs during ink making and printing simply accelerates the oxidation process. A variety of chemical treatments including organic capping agents and metallic coating have been used to slow this oxidation. We have established synthetic conditions of copper nanoparticles (CuNPs) which are resistant to oxidation and average diameter of 20 to 50nm. Specific resistivity should be less than $4\;{\mu}{\Omega}{\cdot}cm$ when sintered at lower temperature than $250^{\circ}C$ to be able to apply to conductive patterns of FPCBs using ink-jet printing. Through this study, the parameters to control average diameter of CuNPs were found to be the introduction of additive agent, the feeding rate of reducing agent, and reaction temperature. The CuNPs with various average diameters (58, 40, 26, 20nm) could be synthesized by controlling these parameters. The dispersed solution of CuNPs with an average size of 20 nm was made with nonpolar solvent containing 3 wt% of binder, and then coated onto glass substrate. After sintering the coated substrates at $250^{\circ}C$ for 30 minutes in nitrogen atmosphere, metallic copper film resulted in a specific resistivity of $4.2\;{\mu}{\Omega}{\cdot}cm$.

  • PDF

The Properties of Synthetic Calcium Ferrite for Ironmaking and Steelmaking using Industrial By-products - (2) (산업부산물을 활용한 제철·제강용 합성 칼슘 페라이트 특성 - (2))

  • Park, Soo Hyun;Chu, Yong Sik;Seo, Sung Kwan;Park, Jae Wan
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.12-20
    • /
    • 2014
  • Calcium ferrite is a major bonding material self-fluxed sintered ore, and it is used as a flux in the steelmaking process. Calcium ferrite is more effective binder for making sintered ore and flux for steel making because of it's low melting temperature. In this Study, calcium ferrite was made by using variety industrial by-products from steel plant. The property of calcium ferrites was investigated on the basis of test method using in the cement manufacturing process. Crystal analysis, compression test as well as thermal analysis were carried out to evaluate physical properties of calcium ferrite.