Acknowledgement
Supported by : Royal Society
References
- Bae, S.H., Woo, H.A., Sung, S.H., Lee, H.E., Lee, S.K., Kil, I.S., and Rhee, S.G. (2009). Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid. Redox Signal. [Epub ahead of print] https://doi.org/10.1089/ars.2008.2325
- Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980-984 https://doi.org/10.1038/nature02075
- Boulos, S., Meloni, B.P., Arthur, P.G., Bojarski, C., and Knuckey, N.W. (2007). Peroxiredoxin 2 overexpression protects cortical neuronal cultures from ischemic and oxidative injury but not glutamate excitotoxicity, whereas Cu/Zn superoxide dismutase 1 overexpression protects only against oxidative injury. J. Neurosci. Res. 85, 3089-3097 https://doi.org/10.1002/jnr.21429
- Brown, P.H., Alani, R., Preis, L.H., Szabo, E., and Birrer, M.J.(1993). Suppression of oncogene-induced transformation by a deletion mutant of c-jun. Oncogene 8, 877-886
- Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., and Chumakov, P.M. (2004). Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304, 596-600 https://doi.org/10.1126/science.1095569
- Chang, T.S., Jeong, W., Woo, H.A., Lee, S.M., Park, S., and Rhee, S.G. (2004). Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J. Biol. Chem. 279, 50994-51001 https://doi.org/10.1074/jbc.M409482200
- Fang, J., Nakamura, T., Cho, D.H., Gu, Z., and Lipton, S.A. (2007). S-nitrosylation of peroxiredoxin 2 promotes oxidative stressinduced neuronal cell death in Parkinson's disease. Proc. Natl. Acad. Sci. USA 104,18742-18747 https://doi.org/10.1073/pnas.0705904104
- Findlay, V.J., Townsend, D.M., Morris, T.E., Fraser, J.P., He, L., and Tew, K.D. (2006). A novel role for human sulfiredoxin in the reversal of glutathionylation. Cancer Res. 66, 6800-6806 https://doi.org/10.1158/0008-5472.CAN-06-0484
- Giudice, A., and Montella, M. (2006). Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays 28,169-181 https://doi.org/10.1002/bies.20359
- Glauser, D.A., Brun, T., Gauthier, B.R., and Schlegel, W. (2007). Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol. Biol. 8, 54 https://doi.org/10.1186/1471-2199-8-54
- Hattori, F., Murayama, N., Noshita, T., and Oikawa, S. (2003). Mitochondrial peroxiredoxin-3 protects hippocampal neurons from excitotoxic injury in vivo. J. Neurochem. 86, 860-868 https://doi.org/10.1046/j.1471-4159.2003.01918.x
- Immenschuh, S., and Baumgart-Vogt, E. (2005). Peroxiredoxins, oxidative stress, and cell proliferation. Antioxid. Redox Signal. 7, 768-777 https://doi.org/10.1089/ars.2005.7.768
- Jeong, W., Park, S.J., Chang, T.S., Lee, D.Y., and Rhee, S.G. (2006). Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin. J. Biol. Chem. 281,14400-14407 https://doi.org/10.1074/jbc.M511082200
- Jonsson, T.J., Johnson, L.C., and Lowther, W.T. (2008a). Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace. Nature 451, 98-101 https://doi.org/10.1038/nature06415
- Jonsson, T.J., Murray, M.S., Johnson, L.C., and Lowther, W.T.(2008b). Reduction of cysteine sulfinic acid in peroxiredoxin by sulfiredoxin proceeds directly through a sulfinic phosphoryl ester intermediate. J. Biol. Chem. 283, 23846-23851 https://doi.org/10.1074/jbc.M803244200
- Kensler, T.W., Wakabayashi, N., and Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116 https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
- Lee, J.M., Li, J., Johnson, D.A., Stein, T.D., Kraft, A.D., Calkins, M.J., Jakel, R.J., and Johnson, J.A. (2005). Nrf2, a multi-organ protector? FASEB J. 19, 1061-1066 https://doi.org/10.1096/fj.04-2591hyp
- Liby, K.T., Yore, M.M., and Sporn, M.B. (2007). Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer. Nat. Rev. Cancer 7, 357-369 https://doi.org/10.1038/nrc2129
- Nguyen, T., Yang, C.S., and Pickett, C.B. (2004). The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress. Free Radic. Biol. Med. 37, 433-441 https://doi.org/10.1016/j.freeradbiomed.2004.04.033
- Nioi, P., McMahon, M., Itoh, K., Yamamoto, M., and Hayes, J.D.(2003). Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem. J. 374, 337-348 https://doi.org/10.1042/BJ20030754
- Noh, Y.H., Baek, J.Y., Jeong, W., Rhee, S.G., and Chang, T.S.(2009). Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J. Biol. Chem. doi:10.1074/jbc.M808981200
- Papadia, S., Soriano, F.X., Leveille, F., Martel, M.A., Dakin, K.A., Hansen, H.H., Kaindl, A., Sifringer, M., Fowler, J., Stefovska, V., et al. (2008). Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci. 11, 476-487 https://doi.org/10.1038/nn2071
- Qu, D., Rashidian, J., Mount, M.P., Aleyasin, H., Parsanejad, M., Lira, A., Haque, E., Zhang, Y., Callaghan, S., Daigle, M., et al.(2007). Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55, 37-52 https://doi.org/10.1016/j.neuron.2007.05.033
- Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552 https://doi.org/10.1016/j.freeradbiomed.2005.02.026
- Rhee, S.G., Jeong, W., Chang, T.S., and Woo, H.A. (2007). Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance. Kidney Int. 106, S3-8 https://doi.org/10.1038/sj.ki.5002380
- Rhee, S.G., Woo, H.A., Bae, S.H., and Park, S. (2009) Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins. Antioxid. Redox Signal. 11, 739-745. (in press) https://doi.org/10.1089/ars.2008.2360
- Sanchez-Font, M.F., Sebastia, J., Sanfeliu, C., Cristofol, R., Marfany, G., and Gonzalez-Duarte, R. (2003). Peroxiredoxin 2(PRDX2), an antioxidant enzyme, is under-expressed in Down syndrome fetal brains. Cell Mol. Life Sci. 60,1513-1523 https://doi.org/10.1007/s00018-003-3048-1
- Shih, A.Y., Li, P., and Murphy, T.H. (2005). A small-moleculeinducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 25, 10321-10335 https://doi.org/10.1523/JNEUROSCI.4014-05.2005
- Singh, A., Ling, G., Suhasini, A.N., Zhang, P., Yamamoto, M., Navas-Acien, A., Cosgrove, G., Tuder, R.M., Kensler, T.W., Watson, W.H., et al. (2009). Nrf2-dependent sulfiredoxin-1 expression protects against cigarette smoke-induced oxidative stress in lungs. Free Radic. Biol. Med. 46, 376-386 https://doi.org/10.1016/j.freeradbiomed.2008.10.026
- Soriano, F.X., Leveille, F., Papadia, S., Higgins, L.G., Varley, J., Baxter, P., Hayes, J.D., and Hardingham, G.E. (2008). Induction of sulfiredoxin expression and reduction of peroxiredoxin hyperoxidation by the neuroprotective Nrf2 activator 3H-1,2-dithiole-3-thione. J. Neurochem. 107, 533-543 https://doi.org/10.1111/j.1471-4159.2008.05648.x
- Wasserman, W.W., and Fahl, W.E. (1997). Comprehensive analysis of proteins which interact with the antioxidant responsive element: correlation of ARE-BP-1 with the chemoprotective induction response. Arch. Biochem. Biophys. 344, 387-396 https://doi.org/10.1006/abbi.1997.0215
- Wei, Q., Jiang, H., Matthews, C.P., and Colburn, N.H. (2008). Sulfiredoxin is an AP-1 target gene that is required for transformation and shows elevated expression in human skin malignancies. Proc. Natl. Acad. Sci. USA 105,19738-19743 https://doi.org/10.1073/pnas.0810676105
- Wood, Z.A., Schroder, E., Robin Harris, J., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28, 32-40 https://doi.org/10.1016/S0968-0004(02)00003-8
- Yao, J., Taylor, M., Davey, F., Ren, Y., Aiton, J., Coote, P., Fang, F., Chen, J.X., Yan, S.D., and Gunn-Moore, F.J. (2007). Interaction of amyloid binding alcohol dehydrogenase/Abeta mediates upregulation of peroxiredoxin II in the brains of Alzheimer's disease patients and a transgenic Alzheimer's disease mouse model. Mol. Cell. Neurosci. 35, 377-382 https://doi.org/10.1016/j.mcn.2007.03.013
- Yates, M.S., Tauchi, M., Katsuoka, F., Flanders, K.C., Liby, K.T., Honda, T., Gribble, G.W., Johnson, D.A., Johnson, J.A., Burton, N.C., et al. (2007). Pharmacodynamic characterization of chemopreventive triterpenoids as exceptionally potent inducers of Nrf2-regulated genes. Mol. Cancer Ther. 6, 154-162 https://doi.org/10.1158/1535-7163.MCT-06-0516
- Zhang, D.D. (2006). Mechanistic studies of the Nrf2-Keap1 signaling pathway. Drug Metab. Rev. 38, 769-789 https://doi.org/10.1080/03602530600971974
Cited by
- Nrf2 the rescue: Effects of the antioxidative/electrophilic response on the liver vol.244, pp.1, 2010, https://doi.org/10.1016/j.taap.2010.01.013
- Reexamination of the electrophile response element sequences and context reveals a lack of consensus in gene function vol.1799, pp.7, 2009, https://doi.org/10.1016/j.bbagrm.2010.05.003
- Triterpenoids CDDO-ethyl amide and CDDO-trifluoroethyl amide improve the behavioral phenotype and brain pathology in a transgenic mouse model of Huntington's disease vol.49, pp.2, 2010, https://doi.org/10.1016/j.freeradbiomed.2010.03.017
- Redox Regulation of Lipopolysaccharide-mediated Sulfiredoxin Induction, Which Depends on Both AP-1 and Nrf2 vol.285, pp.45, 2009, https://doi.org/10.1074/jbc.m110.126839
- Reduction of Cysteine Sulfinic Acid in Eukaryotic, Typical 2-Cys Peroxiredoxins by Sulfiredoxin vol.15, pp.1, 2009, https://doi.org/10.1089/ars.2010.3564
- Activation of Nrf2-Regulated Glutathione Pathway Genes by Ischemic Preconditioning vol.2011, pp.None, 2011, https://doi.org/10.1155/2011/689524
- Nuclear factor E2-related factor 2 Dependent Overexpression of Sulfiredoxin and Peroxiredoxin III in Human Lung Cancer vol.26, pp.3, 2011, https://doi.org/10.3904/kjim.2011.26.3.304
- hTERT Overexpression Alleviates Intracellular ROS Production, Improves Mitochondrial Function, and Inhibits ROS-Mediated Apoptosis in Cancer Cells vol.71, pp.1, 2009, https://doi.org/10.1158/0008-5472.can-10-1588
- CNS Peroxiredoxins and Their Regulation in Health and Disease vol.14, pp.8, 2009, https://doi.org/10.1089/ars.2010.3567
- Gene expression analysis of precision-cut human liver slices indicates stable expression of ADME-Tox related genes vol.253, pp.1, 2009, https://doi.org/10.1016/j.taap.2011.03.010
- Role of sulfiredoxin as a regulator of peroxiredoxin function and regulation of its expression vol.53, pp.3, 2012, https://doi.org/10.1016/j.freeradbiomed.2012.05.020
- Bardoxolone Methyl Decreases Megalin and Activates Nrf2 in the Kidney vol.23, pp.10, 2009, https://doi.org/10.1681/asn.2012050457
- The Subtype of GluN2 C-terminal Domain Determines the Response to Excitotoxic Insults vol.74, pp.3, 2009, https://doi.org/10.1016/j.neuron.2012.03.021
- Genetic Polymorphisms and Protein Expression of NRF2 and Sulfiredoxin Predict Survival Outcomes in Breast Cancer vol.72, pp.21, 2009, https://doi.org/10.1158/0008-5472.can-12-1474
- Loss of sulfiredoxin renders mice resistant to azoxymethane/dextran sulfate sodium-induced colon carcinogenesis vol.34, pp.6, 2009, https://doi.org/10.1093/carcin/bgt059
- Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration vol.75, pp.4, 2013, https://doi.org/10.1111/bcp.12022
- SMRT-mediated co-shuttling enables export of class IIa HDACs independent of their CaM kinase phosphorylation sites vol.124, pp.1, 2009, https://doi.org/10.1111/jnc.12058
- Sulforaphane Enhances the Ability of Human Retinal Pigment Epithelial Cell against Oxidative Stress, and Its Effect on Gene Expression Profile Evaluated by Microarray Analysis vol.2013, pp.None, 2013, https://doi.org/10.1155/2013/413024
- Epigenetic Mechanisms in Stroke and Epilepsy vol.38, pp.1, 2009, https://doi.org/10.1038/npp.2012.134
- Global Transcriptome Profile of Cryptococcus neoformans during Exposure to Hydrogen Peroxide Induced Oxidative Stress vol.8, pp.1, 2009, https://doi.org/10.1371/journal.pone.0055110
- Studies onIn VivoFunction of Peroxiredoxins in Knockout Mice vol.33, pp.2, 2013, https://doi.org/10.7599/hmr.2013.33.2.97
- Telomerase reverse transcriptase promotes the proliferation of human laryngeal carcinoma cells through activation of the activator protein 1 vol.6, pp.1, 2009, https://doi.org/10.3892/ol.2013.1344
- Influence of GluN2 subunit identity on NMDA receptor function vol.74, pp.None, 2009, https://doi.org/10.1016/j.neuropharm.2013.01.016
- Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg 2+ and memantine under conditions of agonist exposure vol.74, pp.None, 2009, https://doi.org/10.1016/j.neuropharm.2013.01.024
- Role of sulfiredoxin in systemic diseases influenced by oxidative stress vol.2, pp.None, 2009, https://doi.org/10.1016/j.redox.2014.09.002
- Effect of dietary α-lipoic acid on the mRNA expression of genes involved in drug metabolism and antioxidation system in rat liver vol.112, pp.3, 2009, https://doi.org/10.1017/s0007114514000841
- Tumor promoter-induced sulfiredoxin is required for mouse skin tumorigenesis vol.35, pp.5, 2009, https://doi.org/10.1093/carcin/bgu035
- The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis vol.5, pp.1, 2009, https://doi.org/10.1128/mbio.01087-13
- Topical Application of the Synthetic Triterpenoid RTA 408 Protects Mice from Radiation-Induced Dermatitis vol.181, pp.5, 2009, https://doi.org/10.1667/rr13578.1
- Nuclear Heme Oxygenase-1 (HO-1) Modulates Subcellular Distribution and Activation of Nrf2, Impacting Metabolic and Anti-oxidant Defenses vol.289, pp.39, 2009, https://doi.org/10.1074/jbc.m114.567685
- Quantitative structure-activity relationship studies of dibenzo[a,d]cycloalkenimine derivatives for non-competitive antagonists of N-methyl-d-aspartate based on density functional theory with electron vol.9, pp.2, 2009, https://doi.org/10.1016/j.jtusci.2014.10.006
- Effect of MK-801 and Clozapine on the Proteome of Cultured Human Oligodendrocytes vol.10, pp.None, 2009, https://doi.org/10.3389/fncel.2016.00052
- Hepatic 3D spheroid models for the detection and study of compounds with cholestatic liability vol.6, pp.None, 2016, https://doi.org/10.1038/srep35434
- Thioredoxin 1 protects astrocytes from oxidative stress by maintaining peroxiredoxin activity vol.13, pp.3, 2009, https://doi.org/10.3892/mmr.2016.4855
- Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes vol.100, pp.None, 2009, https://doi.org/10.1016/j.freeradbiomed.2016.06.027
- Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol vol.51, pp.14, 2009, https://doi.org/10.1021/acs.est.7b01967
- The promising potential role of ketones in inflammatory dermatologic disease: a new frontier in treatment research vol.28, pp.6, 2017, https://doi.org/10.1080/09546634.2016.1276259
- Nrf2-dependent persistent oxidative stress results in stress-induced vulnerability to depression vol.22, pp.12, 2009, https://doi.org/10.1038/mp.2016.144
- A c-Jun N-terminal kinase inhibitor, JNK-IN-8, sensitizes triple negative breast cancer cells to lapatinib vol.8, pp.62, 2009, https://doi.org/10.18632/oncotarget.20581
- The Multifaceted Impact of Peroxiredoxins on Aging and Disease vol.29, pp.13, 2009, https://doi.org/10.1089/ars.2017.7452
- Reactive oxygen species regulate activity-dependent neuronal plasticity in Drosophila vol.7, pp.None, 2009, https://doi.org/10.7554/elife.39393
- XBP1-KLF9 Axis Acts as a Molecular Rheostat to Control the Transition from Adaptive to Cytotoxic Unfolded Protein Response vol.25, pp.1, 2009, https://doi.org/10.1016/j.celrep.2018.09.013
- Metabolism-Based Therapeutic Strategies Targeting Cancer Stem Cells vol.10, pp.None, 2009, https://doi.org/10.3389/fphar.2019.00203
- Earliest Mechanisms of Dopaminergic Neurons Sufferance in a Novel Slow Progressing Ex Vivo Model of Parkinson Disease in Rat Organotypic Cultures of Substantia Nigra vol.20, pp.9, 2009, https://doi.org/10.3390/ijms20092224
- SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression vol.160, pp.11, 2009, https://doi.org/10.1210/en.2019-00283
- Neuronal Activity and Its Role in Controlling Antioxidant Genes vol.21, pp.6, 2009, https://doi.org/10.3390/ijms21061933
- Tanshinone IIA pretreatment promotes cell survival in human lung epithelial cells under hypoxia via AP-1-Nrf2 transcription factor vol.25, pp.3, 2009, https://doi.org/10.1007/s12192-020-01083-3
- Bacteroides fragilis Enterotoxin Induces Sulfiredoxin-1 Expression in Intestinal Epithelial Cell Lines Through a Mitogen-Activated Protein Kinases- and Nrf2-Dependent Pathway, Leading to the Suppress vol.21, pp.15, 2009, https://doi.org/10.3390/ijms21155383
- Oxidative Stress in Cancer vol.38, pp.2, 2009, https://doi.org/10.1016/j.ccell.2020.06.001
- NRF2 and the Ambiguous Consequences of Its Activation during Initiation and the Subsequent Stages of Tumourigenesis vol.12, pp.12, 2009, https://doi.org/10.3390/cancers12123609
- Targeting Reactive Oxygen Species Capacity of Tumor Cells with Repurposed Drug as an Anticancer Therapy vol.2021, pp.None, 2009, https://doi.org/10.1155/2021/8532940
- Increased oxidative stress and cancer biomarkers in the ventral prostate of older rats submitted to maternal malnutrition vol.523, pp.None, 2021, https://doi.org/10.1016/j.mce.2020.111148
- Changes in Glutathione Content in Liver Diseases: An Update vol.10, pp.3, 2009, https://doi.org/10.3390/antiox10030364
- Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress vol.14, pp.4, 2009, https://doi.org/10.1080/17512433.2021.1901578
- The Phenolic Antioxidant 3,5-dihydroxy-4-methoxybenzyl Alcohol (DHMBA) Prevents Enterocyte Cell Death under Oxygen-Dissolving Cold Conditions through Polyphyletic Antioxidant Actions vol.10, pp.9, 2009, https://doi.org/10.3390/jcm10091972