• Title/Summary/Keyword: synthetic spectra

Search Result 127, Processing Time 0.022 seconds

Mobility-Spectrum Analysis of an Anisotropic Material System with a Single-Valley Indirect-Band-Gap Semiconductor Quantum-Well

  • Joung, Hodoug;Ahn, Il-Ho;Yang, Woochul;Kim, Deuk Young
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.774-783
    • /
    • 2018
  • Full maximum-entropy mobility-spectrum analysis (FMEMSA) is the best algorithm among mobility spectrum analyses by which we can obtain a set of partial-conductivities associated with mobility values (mobility spectrum) by analyzing magnetic-field-dependent conductivity-tensors. However, it is restricted to a direct band-gap semiconductor and should be modified for materials with other band structures. We developed the modified version of FMEMSA which is appropriate for a material with a single anisotropic valley, or an indirect-band-gap semiconductor quantum-well with a single non-degenerate conduction-band valley e.g., (110)-oriented AlAs quantum wells with a single anisotropic valley. To demonstrate the reliability of the modified version, we applied it to several sets of synthetic measurement datasets. The results demonstrated that, unlike existing FMEMSA, the modified version could produce accurate mobility spectra of materials with a single anisotropic valley.

Interaction of Mastoparan B and Its Ala-Substituted Analogs with Phospholipid Bilayers

  • 박남규;서정길;구희정;김승호;Sannamu Lee;Gohsuke Sugihara;김광호;박장수;강신원
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.933-938
    • /
    • 1997
  • The interaction of mastoparan B, a tetradecapeptide toxin found in the hornet Vespa basalis, with phospholipid bilayers was investigated. Synthetic mastoparan B and its analogs, obtained by substituting one hydrophilic amino acid (2-Lys, 4-Lys, 5-Ser, 8-Ser, 11-Lys, or 12-Lys) in mastoparan B with Ala, were studied. Mastoparan B and its analogs were synthesized by the solid-phase method. As shown by circular dichroism spectra, mastoparan B and its analogs adopted an unordered structure in buffer solution. All peptides took an α-helical structure, and the α-helical content of its analogs increased in the presence of neutral and acidic liposomes as compared to that of mastoparan B. In the calcein leakage experiment, we observed that mastoparan B interacted more weakly with lipid bilayers in neutral and acidic media than its analogs. Mastoparan B also showed slightly lower antimicrobial activity and hemolytic activity towards human erythrocytes than its analogs. These results indicate that the greater hydrophobicity of the amphiphilic α-helix of mastoparan B by replacement with alamine residues results in the increased biological activity and helical content.

Influence of TiO2 Nanoparticle Filler on the Properties of PET and PLA Nanocomposites (이산화티탄 나노입자 필러가 PET와 PLA 나노복합체의 특성에 미치는 영향)

  • Farhoodi, Mehdi;Dadashi, Saeed;Mousavi, Seyed Mohammad Ali;Sotudeh-Gharebagh, Rahmat;Emam-Djomeh, Zahra;Oromiehie, Abdolrasul;Hemmati, Farkhondeh
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.745-755
    • /
    • 2012
  • Two types of polymers were tested in this study; poly(ethylene terephthalate) (PET) as a synthetic example and poly(lactic acid) (PLA) as a natural polymer. DSC analyses showed that the use of nanofiller increased the degree of crystallinity ($X_c$) of both PET and PLA polymers, but the effect was more noticeable on PET nanocomposites. The crystallization of PLA and PET nanocomposites occurred at higher temperatures in comparison to neat polymers. According to dynamic mechanical-thermal analysis (DMTA), the damping factor of PET/$TiO_2$ nanoparticles decreased compared to the neat matrix, but for PLA nanocomposites the opposite trend was observed. Results of the mechanical test showed that for both PET and PLA nanocomposites, the most successful toughening effect was observed at 3 wt% loading of $TiO_2$ nanoparticles. SEM micrographs revealed uniform distribution of $TiO_2$ nanoparticles at 1 and 3 wt% loading levels. The results of WAXD spectra explained that the polymorphs of PLA and PET was not affected by $TiO_2$ nanoparticles. UV-visible spectra showed that $TiO_2$ nanocomposite films had high ultraviolet shielding compared to neat polymer, but there was significant reduction in transparency.

Comparable Electron Capture Efficiencies for Various Protonated Sites on the 3rd Generation Poly(Propylene Imine) Dendrimer Ions: Applications by SORI-CAD and Electron Capture Dissociation Mass Spectrometry (ECD MS)

  • Han, Sang-Yun;Lee, Sun-Young;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.5
    • /
    • pp.740-746
    • /
    • 2005
  • In this article, we report the tandem mass spectrometry investigations for the electron capture efficiencies of the protons belonging to the different locations (generations) in a poly(propylene imine) dendrimer with three layers of a repeat unit (named as the third generation dendrimer). The employed tandem mass spectrometry methods include SORI-CAD (sustained off-resonance irradiation collisional activation dissociation) and ECD(electron capture dissociation) mass spectrometry. We obtained SORI-CAD spectra for the dendrimer ions in the different charge states, ranging from 2+ to 4+. The analysis of fragmentation sites provides the information as to where the protons are distributed among various generations of the dendrimer. Based upon this, a new strategy to study the electron capture efficiencies of the protons is utilized to examine a new type of triplycharged ions by SORI-CAD, i.e., the 3+ ions generated from the charge reduction of the native 4+ ions by ECD: (M+4H)$^{4+}\;+\;e^-\;{\rightarrow}$ (M+4H)$^{3+\bullet}$ ${\rightarrow}\;({H^{\bullet}}_{ejected}$) + (M+3H)$^{3+}\;\rightarrow$ CAD. Interestingly, comparison of these four SORICAD spectra indicates that the proton distribution in the charge-reduced 3+ ions is very close to that in the native 4+ ions. It further suggests that in this synthetic polymer ($\sim$1.7 kDa) with an artificial architecture, the electron capture efficiencies of the protons are actually insensitive to where they are located in the molecule. This is somewhat contradictory to common expectations that the protons in the inner generations may not be well exposed to the incoming electron irradiation as much as the outer ones are, thus may be less efficient for electron capture. This finding may carry some implications for the case of medium sized peptide ions with similar masses, which are known to show no obvious site-specific fragmentations in ECD MS.

Preparation and Characterization of Thiolate-Protected Gold Nanoparticles Using Modified One-Phase Method (개선된 단일상 합성법을 이용한 티올화 나노 금의 합성 및 확인)

  • Park, Jisu;Kim, Youhyuk
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.4
    • /
    • pp.191-196
    • /
    • 2017
  • One-phase method to prevent the initial formation of Ag(I) thiolate layered materal from the mixture of $AgNO_3$ and thiols was previously developed to generate TP (Thiolate-Protected)-nanosilver. In this modified method, $AgNO_3$ is added to the mixtures of $NaBH_4$ and thiols in ethanol. This method was so successful that it was applied to synthesize TP-nanogold and nanoplatinum. The synthesis and characterization of these nanoparticles by ultraviolet-visible (UV-vis) absorption spectra, transmission electron microscopy (TEM) pictures, X-ray powder differaction (XRD) patterns and infrared(IR) spectra are described. The results show that colloidal nanoparticles are spherical or oval shape and the mean sizes for TP-nanogold and nanoplatinum are about 3~7 nm and below 2 nm, respectively. The conformation of polymethylene [$-(CH_2)_7-$] sequence in octanethiolate attached to nanogold was elucidated as trans.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

The Development of Enzymatic Mordanting Using Laccase for Phenolic Natural Dye (라카아제 촉매 활성에 의한 홍차 염색물의 매염효과)

  • Lee, Hye Bin;Song, Ji Eun;Shim, Eui Jin;Kim, Hye Rim
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.323-330
    • /
    • 2018
  • This study aim is to provide new coloration method by laccase-catalyzation on natural phenolic dyeing process. In this study, silk was dyed with black tea, which is one of polyphenolic dye, extracted in distilled water. The dyed samples were catalyzed by laccase as the eco-friendly mordanting process. To optimize the conditions of laccase-catalyzed coloration, conditions were varied by different mordanting methods (one-bath, two-bath), temperature and treatment time. The dye affinity in terms of the value of K/S, $L^*$, $a^*$, $b^*$, and H, V, C was measured by Computer Color Matching System (CCM, CM-2600d, Spectra Magic NX, Korea). The effect of laccase-catalyzed coloration on washing fastness was evaluated and compared with the synthetic mordant (Al, Cu, and Fe). As the result of color analysis of dyed silk, the optimum conditions of laccase-catalyzed coloration were determined to post-mordanting by one-bath at $50^{\circ}C$ for 3 hours. Under the optimum laccase-catalyzed conditions, the dyed silk was shown the color of yellowish-red. After laccase-catalyzed coloration on the dyed silk, the improvement of washing fastness was obtained compared with mordanted silk by synthetic mordant (Al, Cu, and Fe). Therefore, the present study was demonstrated that the effective enzymatic mordanting method by laccase for phenolic natural dyeing with vivid color and good fastness.

Spectro-electrochemical Analyses of Immobilization of Glucose Oxidase (Glucose Oxidase 고정화에 대한 전기화학적/광학적 분석)

  • Kim, Hyun-Cheol;Cho, Young-Jai;Gu, Hal-Bon;SaGon, Geon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.316-319
    • /
    • 2000
  • In the case of immobilizing of glucose oxidase into polypyrrole (PPy) using electrosynthesis, the glucose oxidase (GOx) forms a coordinate bond with the polymer's backbone. However, because of intrinsic insulation and net-chain of the enzyme, the charge transfer and mass transport are obstructed during the film growth. Therefore, the film growth is dull. We synthesized the enzyme electrode by electropolymerization added some organic solvent, A formative seeds of film growth is delayed by adding the solvent. The delay is induced by radical transfer between the solvent and pyrrole monomer. In the case of adding ethanol, the radical transfer shares the contribution of dopant between electrolyte anion and GOx polyanion. This may lead to increase amount of immobilized the enzyme in ppy. However, adding tetrahydrofuran (THF), the radical transfer is more brisk, resulting in short chained polymer. Therefore, the doping level is lowered and then amount of immobilized of enzyme is decreased. For the UV absorption spectra of synthetic solution before synthesis and after, in the case of ethanol added, the optical density was slightly decreased for the GOx peaks. It suggests amount of GOx in the solution was decreased and amount of GOx in the film was increased. We established qualitatively that amount of immobilization can be improved by adding a little ethanol in the synthetic solution. It is due to radical transfer reaction. The radical transfer shares the contribution of dopant between small and fast electrolyte anion and big and slow GOx polyanion.

  • PDF

Remote Sensing of Surface Films as a Tool for the Study of Oceanic Dynamic Processes

  • Mitnik, Leonid;Dubina, Vyacheslav;Konstantinov, Oleg;Fischenko, Vitaly;Darkin, Denis
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Biogenic surface films, which are often present in coastal areas, may enhance the signatures of hydrodynamic processes in microwave, optical, and infrared imagery. We analyzed ERS-1/2 Synthetic Aperture Radar (SAR) and Envisat Advanced Synthetic Aperture Radar (ASAR) images taken over the Japan/East Sea (JES). We focused on the appearance of the contrast SAR signatures, particularly the dark features of different scales caused by various oceanic and atmospheric phenomena. Spiral eddies of different scales were detected through surface film patterns both near the coast and in the open regions of the JES in warm and cold seasons. During field experiments carried out at the Pacific Oceanological Institute (POI) Marine Station 'Cape Shults' in Peter the Great Bay, the sea surface roughness characteristics were measured during the day and night using a developed polarization spectrophotometer and various digital cameras and systems of floats. The velocity of natural and artificial slicks was estimated using video and ADCP time series of tracers deployed on the sea surface. The slopes of gravity-capillary wave power spectra varied between .4 and .5. Surface currents in the natural and artificial slicks increased with the distance from the coast, varying between 4 and 40 cm/s. The contrast of biogenic and anthropogenic slicks detected on vertical and horizontal polarization images against the background varied over a wide range. SAR images and ancillary satellite and field data were processed and analyzed using specialized GIS for marine coastal areas.

Measurement of GPR Direct Wave Velocity by f-k Analysis and Determination of Dielectric Property by Dispersive Guided Wave (f-k 분석에 의한 레이다파 속도 측정 및 레이다파의 분산성 가이드 현상을 이용한 지하 물성 계산)

  • Yi, Myeong-Jong;Endres, Anthony L.;Kim, Jung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.304-315
    • /
    • 2006
  • We have examined the applicability of f-k analysis to the GPR direct wave measurement for water content to characterize vadose zone condition. When the vadose zone consists of a dry surface layer over wet substratum, we obtained f-k spectra where most of the energy is bounded by the air and dry soil velocities. In this case, dry soil velocity was successfully estimated by using high frequency data. On the other hands, when wet soil overlies dry substratum, the f-k spectra show a contrasting response where most of the energy travels with the velocity bounded by dry and wet soil velocities. In this case, the radar waves are trapped and guided within wet soil layer, exhibiting velocity dispersion. By adopting modal propagation theory, we could formulae a simple inversion code to find two layer's dielectric constants as well as layer thickness. By inverting the velocity dispersion curve obtained from f-k spectra of synthetic modeling data, we could obtain good estimates of dielectric constants of each layer as well as first layer thickness. Moreover, we could obtain more accurate results by including the higher mode data. We expect this method will be useful to get the quantitative property of real subsurface when the field condition is similar.