• Title/Summary/Keyword: sustained load

Search Result 113, Processing Time 0.022 seconds

Numerical Model for the Estimation of Ultimate Load Capacity of CFT Columns Considering Time-dependent Behavior (시간 의존적 거동을 고려한 CFT 기둥의 극한 하중 계산을 위한 수치 해석 모델 제안)

  • Seong Hun Kim;Hyo-Gyoung Kwak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.25-31
    • /
    • 2024
  • This paper introduces a numerical analysis model capable of evaluating CFT (Concrete-Filled Tube) columns across all time stages, incorporating creep behavior analysis and inelastic analysis to account for time-dependent behavior. The proposed model is compared with experimental results, revealing that the numerical model presented in this paper demonstrates more accurate trends than existing design criteria. Following verification, a numerical analysis is conducted for each slenderness ratio, determining the ultimate load capacity and examining the short-term and long-term sustained load behavior of the overall CFT column members.

Development and Performance Test for Unbonded Post-Tensioned Anchor (비부착 강연선에 대한 포스트텐션 정착구 개발 및 성능 시험)

  • Cho, Ah Sir;Jo, Yeong Wook;Jeon, Byong Kap;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.1
    • /
    • pp.11-20
    • /
    • 2015
  • An unbonded post-tensioned anchor using a 15.2 mm diameter 7-wire strand was developed based on finite element analysis and experimental testing. In order to evaluate its performance, static load tests and load transfer tests were conducted following KCI-PS101. The static load tests and additional strand tensile tests confirmed that the developed anchor had a capacity more than nominal tensile strength of a 7-wire strand without any damage or deterioration. According to the result of load transfer tests for many different reinforcing details, specimens with no additional reinforcing bars sustained at least 1.64 times the nominal tensile strength of the strand.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

Effets of Steel Fiber Contents on Flexural Creep Behavior of High-Strength Concrete (강섬유 혼입률에 따른 고강도 콘크리트의 휨 크리프 특성)

  • Lim, Seong-Hoon;Kim, Dong-Hwi;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.111-118
    • /
    • 2020
  • In this paper, the flexural creep behavior of hooked-end steel fiber reinforced high-strength concrete was evaluated to investigate the steel fiber content influence on long-term behavior of flexural members. An experimental program consisted of nine prismatic beam specimens with dimensions of 150 × 150 × 600mm reinforced with different contents of steel fiber (0, 0.75 and 1.5% at the volume fraction). To introduce flexural creep loading to notched prismatic beam specimens, a four-point bending test setup was used. The sustained load with 40% of the flexural strength was applied by means of a lever system and controlled by a load cell for 90 days. During sustained loading, crack mouth opening displacement (CMOD) was monitored. Conventional flexural test after creep tests were carried out to evaluate the residual capacity of each specimen. Test results showed that steel fiber content has a significant effect on the flexural creep behavior of high-strength concrete and long-term flexural load with 40% of flexural strength doesn't generate negative effects on the residual capacity of steel fiber reinforced high-strength concrete.

Repair of Pre-cracked Reinforced Concrete (RC) Beams with Openings Strengthened Using FRP Sheets Under Sustained Load

  • Osman, Bashir H.;Wu, Erjun;Ji, Bohai;Abdulhameed, Suhaib S.
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.171-183
    • /
    • 2017
  • Strengthening reinforced concrete (RC) beams with openings by using aramid fiber reinforcement polymers (AFRP) on the beams' surfaces offers a useful solution for upgrading concrete structures to carry heavy loads. This paper presents a repairing technique of the AFRP sheets that effectively strengthens RC beams, controls both the failure modes and the stress distribution around the beam chords and enhances the serviceability (deflection produced under working loads be sufficiently small and cracking be controlled) of pre-cracked RC beams with openings. To investigate the possible damage that was caused by the service load and to simulate the structure behavior in the site, a comprehensive experimental study was performed. Two unstrengthened control beams, four beams that were pre-cracked before the application of the AFRP sheets and one beam that was strengthened without pre-cracking were tested. Cracking was first induced, followed by repair using various orientations of AFRP sheets, and then the beams were tested to failure. This load was kept constant during the strengthening process. The results show that both the preexisting damage level and the FRP orientation have a significant effect on strengthening effectiveness and failure mode. All of the strengthened specimens exhibited higher capacities with capacity enhancements ranging from 21.8 to 66.4%, and the crack width reduced by 25.6-82.7% at failure load compared to the control beam. Finally, the authors present a comparison between the experimental results and the predictions using the ACI 440.2R-08 guidelines.

Tension Creep Model of Recycled PET Polymer Concrete with Flexural Loading (휨 하중을 받는 재생 PET 폴리머 콘크리트의 인장크리프 모델)

  • Chae, Young-Suk;Tae, Ghi-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.117-125
    • /
    • 2012
  • In recent years, polymer concrete based on polyester resin have been widely generalized and the research of polymer concrete have been actively pursued by the technical innovations. Polymer concrete is a composite consisting of aggregates and an organic resin binder that hardens by polymerization. Polymer concrete are stronger by a factor of three or more in compression, a factor of four to six in tension and flexural and a factor of two in impact when compared with portland cement concrete. In view of the growing use of polymer concrete, it is important to study the physical characteristics of the material, emphasizing the short term properties as well as long term mechanical behavior. If polymer concrete is to be used in flexural load-bearing application such as in beam, it is imperative to understand the deformation of the material under sustained loading conditions. This study is proposed to empirical and mechanical model of polymer concrete tension creep using long-term experimental results and mathematical development. The test results showed that proposed model has been used successfully to predict creep deformations at a stress level that was 20 percent of the ultimate strength and viscoelastic behavior of recycled-PET polymer concrete is linear of stress level up to 30 percent. It is expected that the present model allows more realistic evaluation of varying stresses in polymer concrete structures with a constant loading.

Studies on the Consolidation Characteristics of Organic Soils. (유기질토의 압밀특성에 관한 연구)

  • 김재영;주재우
    • Geotechnical Engineering
    • /
    • v.2 no.2
    • /
    • pp.17-28
    • /
    • 1986
  • This study was intended to investigate the consolidation characteristics of lowly organic soils and highly organic ones, with organic content 15 of and 68 % respectively. which were sampled from three different soil regions in Chonbuk province. The results were obtained partly from standard consolidation test but mostly from single increment consolidation test in which each sample was held under the first sustained load for weeks. Highly organic soils retained considerably larger void ratio than lowly organic ones. Decrease of void ratio due to load increment was gradual in lowly organic soils and abrupt in highly organic ones. The long-term compression quantity of the highly organic soils became linearly proportional to the logarithm of time after 5 minutes. The lowly organic soils showed a compression pattern similar to that of clay. For highly organic soils, the secondary consolidation coefficient appeared to have a constant relationship with the logarithm of consolidation time, and therefore may be used as a significant factor in estimating the long-term settlement.

  • PDF

Long-term behavior of prestressed concrete beam with corrugated steel web under sustained load

  • Motlagh, Hamid Reza Ebrahimi;Rahai, Alireza
    • Steel and Composite Structures
    • /
    • v.43 no.6
    • /
    • pp.809-819
    • /
    • 2022
  • This paper proposes a method to predict the deflection of prestressed concrete (PC) beams with corrugated steel web (CSW) under constant load concerning time-dependent variation in concrete material. Over time, the top and bottom concrete slabs subjected to asymmetric compression experience shrinkage and creep deformations. Here, the classical Euler-Bernoulli beam theory assumption that the plane sections remain plane is not valid due to shear deformation of CSW. Therefore, this study presents a method based on the first-order shear deformation to find the long-term deflection of the composite beams under bending by considering time effects. Two experimental prestressed beams of this type were monitored under their self-weight over time, and the theoretical results were compared with those data. Additionally, 3D analytical models of the experimental beams were used according to material properties, and the results were compared with two previous cases. There was good consistency between the analytical and numerical results with low error, which increased by wave radius. It is concluded that the proposed method could reliably be used for design purposes.

Creep Effect of Shallow Plate Anchor in Soft Clsy

  • Shin, Eun-Chul;Das, Braja
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.63-72
    • /
    • 1996
  • Plate anchors are often used for various types of offshore construction and maintenance works. When the plates are embedded in soft clay and subjected to sustanined allowable loads, creep may develop. This paper presents some results from laboratory model test designed to study the creep effect that develops with time for a shallow circular anchor subjected to sustained net loads that are less than the net ultimate uplift capacity. Based on the model test results, relationships among the net load, the rate of strain, and time are developed.

  • PDF

The Application Method of DC Distribution in Microgrid (마이크로그리드의 직류 배전 적용 방안)

  • Lee, Soon-myung;Kim, Jeong-Uk
    • Journal of Energy Engineering
    • /
    • v.25 no.1
    • /
    • pp.92-99
    • /
    • 2016
  • In this paper, After the Paris climate conference (COP21) in December 2015, 195 countries adopted the first-ever universal, legally binding global climate deal. As sustained increase of renewable energy and digital load, to implemented and operated Microgrid system's power distribution by DC power distribution. This reduce the loss of power conversion step occurring based on the AC power distribution system and eliminate the loss caused by the reactive power in power distribution system. For this reason, DC Microgrid will be extended to support evidence of National energy policies, Microgrid project status, DC distribution status, and to suggest process of DC power distribution in Microgrid construction project.