• Title/Summary/Keyword: sustainable performance

Search Result 1,016, Processing Time 0.031 seconds

A Strategies to Improve the Natural Ventilation Performance at Underground Parking Lot in Multi-Residential Buildings (공동주택 지하주차장의 자연환기성능 향상방안에 관한 연구)

  • Seo, Jung-Min;Lee, Joong-Hoon;Song, Jong-Eui;Jung, Jung-Hwa;Song, Doo-Sam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.153-163
    • /
    • 2011
  • Energy efficiency and indoor air quality have become main issue to develop healthy and sustainable building in these days. As an effort to reduce the energy consumption in multi-residential building, many attempts as like passive design strategies and renewable energy as well as active control method are tried. However, underground parking lot in multi-residential building seldom adopt the sustainable strategies and only mechanical system is installed as usual. Moreover, the mechanical system installed in underground parking lot is rarely operated due to the electric demand for operation after completion. In this study, as an energy efficient measure, natural ventilation system using stack effect as a driving force for underground parking lot will be proposed and the performance of the suggested system will be analyzed by simulation method.

Operation Performance Evaluation on Auxiliary Heating Device to Prevent Condensation adjacent to Built-in Furniture of Apartment Units in Winter (기존 공동주택 붙박이장에서 겨울철 결로 방지를 위한 보조난방장치 운전 성능 평가)

  • Lee, Chae-Lyn;Lee, Hyun-Hwa;Lim, Jae-Han;Song, Seung-Yeong
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.567-578
    • /
    • 2018
  • The purpose of this study was to evaluate condensation prevention for condensation vulnerable areas around built-in furniture of apartment buildings by applying auxiliary heating device. Recently, the condensation and mold problems of apartment buildings has been growing due to high insulation and high air-tightness performance for energy saving. Condensation at built-in furniture were generally found in winter at the of furniture's back panels, adjacent surfaces of wall, floor and ceiling. These problems are related to the weather conditions and indoor room conditions in winter. To solve these problems, auxiliary heating device was developed and could be installed. The aim of paper is to analyze the thermal environment around the built-in furniture which were applied and not applied auxiliary heating device in winter. In results, it was possible to increase the surface temperature of vulnerable areas around built-in furniture by applying auxiliary heating device, and to minimize condensation problems by using the minimum device.

Design of Smart City Considering Carbon Emissions under The Background of Industry 5.0

  • Fengjiao Zhou;Rui Ma;Mohamad Shaharudin bin Samsurijan;Xiaoqin Xie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.903-921
    • /
    • 2024
  • Industry 5.0 puts forward higher requirements for smart cities, including low-carbon, sustainable, and people-oriented, which pose challenges to the design of smart cities. In response to the above challenges, this study introduces the cyber-physical-social system (CPSS) and parallel system theory into the design of smart cities, and constructs a smart city framework based on parallel system theory. On this basis, in order to enhance the security of smart cities, a sustainable patrol subsystem for smart cities has been established. The intelligent patrol system uses a drone platform, and the trajectory planning of the drone is a key problem that needs to be solved. Therefore, a mathematical model was established that considers various objectives, including minimizing carbon emissions, minimizing noise impact, and maximizing coverage area, while also taking into account the flight performance constraints of drones. In addition, an improved metaheuristic algorithm based on ant colony optimization (ACO) algorithm was designed for trajectory planning of patrol drones. Finally, a digital environmental map was established based on real urban scenes and simulation experiments were conducted. The results show that compared with the other three metaheuristic algorithms, the algorithm designed in this study has the best performance.

Finite element analysis and theoretical modeling of GFRP-reinforced concrete compressive components having waste tire rubber aggregates

  • Mohamed Hechmi El Ouni;Ali Raza
    • Steel and Composite Structures
    • /
    • v.52 no.1
    • /
    • pp.57-76
    • /
    • 2024
  • The management of waste tire rubber has become a pressing environmental and health issue, requiring sustainable solutions to mitigate fire hazards and conserve natural resources. The performance of waste materials in structural components needs to be investigated to fabricate sustainable structures. This study aims to investigate the behavior of glass fiber reinforced polymer (GFRP) reinforced rubberized concrete (GRRC) compressive components under compressive loads. Nine GRRC circular compressive components, varying in longitudinal and transverse reinforcement ratios, were constructed. A 3D nonlinear finite element model (FEM) was proposed by means of the ABAQUS software to simulate the behavior of the GRRC compressive components. A comprehensive parametric analysis was conducted to assess the impact of different parameters on the performance of GRRC compressive components. The experimental findings demonstrated that reducing the spacing of GFRP stirrups enhanced the ductility of GRRC compressive components, while the addition of rubberized concrete further improved their ductility. Failure in GRRC compressive components occurred in a compressive columnar manner, characterized by vertical cracks and increased deformability. The finite element simulations closely matched the experimental results. The proposed empirical model, based on 600 test samples and considering the lateral confinement effect of FRP stirrups, demonstrated higher accuracy (R2 = 0.835, MSE = 171.296, MAE = 203.549, RMSE = 195.438) than previous models.

Sustainable Closed-loop Supply Chain Model for Mobile Phone: Hybrid Genetic Algorithm Approach (모바일폰을 위한 지속가능한 폐쇄루프 공급망 모델: 혼합유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.2
    • /
    • pp.115-127
    • /
    • 2020
  • In this paper, a sustainable close-loop supply chain (SCLSC) model is proposed for effectively managing the production, distribution and handling process of mobile phone. The proposed SCLSC model aims at maximizing total profit as economic factor, minimizing total CO2 emission amount as environmental factor, and maximizing social influence as social factor in order to reinforce sustainability in it. Since these three factors are represented as each objective function in modeling, the proposed SCLSC model can be taken into consideration as a multi-objective optimization problem and solved using a hybrid genetic algorithm (HGA) approach. In numerical experiment, three different scales of the SCLSC model are presented and the efficiency of the HGA approach is proved using various measures of performance.

Ammonia Wastewater Treatment and Selective Recovery Using a Sweep Gas-Vacuum Hybrid Type Membrane Degassing Process (스윕 가스-진공 하이브리드식 탈기막 공정을 활용한 암모니아 폐수처리 및 선택적 회수)

  • Hongsik Yoon;Taijin Min;Minkyu Jeon;Sungil Lim;Sechul Oh;Kyungha Ryu;Chungsung Lee;Bosik Kang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1171-1181
    • /
    • 2023
  • In this study, a sweep gas - vacuum hybrid type membrane degassing process was proposed for ammonia wastewater treatment. In addition, the ammonia selective recovery of the hybrid type membrane degassing process was also investigated. As a result, the hybrid type membrane degassing process showed better degassing performance (54.9 mg NH3/m2min for 360 min) than the sweep gas type (32.3 mg NH3/m2min) or vacuum type (22 mg NH3/m2min). Additionally, the hybrid type membrane degassing process showed an excellent ammonia selectivity (103 times compared to Na+ Na+, 133 times compared to Ca2+). The ammonia selectivity was appeared to be due to the conversion characteristics of ammonium ion / dissolved ammonia depending on pH. The results in this study are expected to be used in the development of ammonia wastewater treatment and ammonia recovery in the future.

Sustainable Closed-loop Supply Chain Model using Hybrid Meta-heuristic Approach: Focusing on Domestic Mobile Phone Industry (혼합형 메타휴리스틱 접근법을 이용한 지속가능한 폐쇄루프 공급망 네트워크 모델: 국내 모바일폰 산업을 중심으로)

  • YoungSu Yun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • In this paper, a sustainable closed-loop supply chain (SCLSC) network model is proposed for domestic mobile phone industry. Economic, environmental and social factors are respectively considered for reinforcing the sustainability of the SCLSC network model. These three factors aim at minimizing total cost, minimizing total amount of CO2 emission, and maximizing total social influence resulting from the establishment and operation of facilities at each stage of the SCLSC network model. Since they are used as each objective function in modeling, the SCLSC network model can be a multi-objective optimization problem. A mathematical formulation is used for representing the SCLSC network model and a hybrid meta-heuristic approach is proposed for efficiently solving it. In numerical experiment, the performance of the proposed hybrid meta-heuristic approach is compared with those of conventional meta-heuristic approaches using some scales of the SCLSC network model. Experimental results shows that the proposed hybrid meta-heuristic approach outperforms conventional meta-heuristic approaches.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.52 no.6
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Energy Performance Evaluation of a New Commercial Building using Calibrated As-built Simulation with Monitoring Data (건물에너지 모니터링 및 시뮬레이션을 활용한 신축건물의 에너지성능평가)

  • Song, Su-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.3
    • /
    • pp.155-166
    • /
    • 2008
  • The performance evaluation of a new building is becoming more important because efficient design alone is often not sufficient to deliver an efficient building. However, there is a lack of standard evaluation methods to measure the energy performance of a new construction that has Energy Conservation Design Measures(ECDMs). This study presents an enhanced method based on calibrated whole-building simulation for evaluating the energy performance of new commercial buildings and demonstrates its use using a case-study building, including: an Energy Use Index(EUI) comparison with sub-metered data and an evaluation of the performance of specific ECDMs. The use of this method has determined that the case-study building was shown to use approximately 47% less energy than the base-case building that has the same shape and function as the case-study building(i.e., calibrated as-built simulation mode]), but doesn't include the simulated ECDMs.