DOI QR코드

DOI QR Code

Ammonia Wastewater Treatment and Selective Recovery Using a Sweep Gas-Vacuum Hybrid Type Membrane Degassing Process

스윕 가스-진공 하이브리드식 탈기막 공정을 활용한 암모니아 폐수처리 및 선택적 회수

  • Hongsik Yoon (Dept. of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Taijin Min (Dept. of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Minkyu Jeon (Dept. of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Sungil Lim (Dept. of Sustainable Environment Research, Korea Institute of Machinery and Materials) ;
  • Sechul Oh (Dept. of Mobility Power Research, Korea Institute of Machinery and Materials) ;
  • Kyungha Ryu (Dept. of Reliability Assessment, Korea Institute of Machinery and Materials) ;
  • Chungsung Lee (Dept. of Reliability Assessment, Korea Institute of Machinery and Materials) ;
  • Bosik Kang (Dept. of Reliability Assessment, Korea Institute of Machinery and Materials)
  • 윤홍식 (한국기계연구원 지속가능환경연구실) ;
  • 민태진 (한국기계연구원 지속가능환경연구실) ;
  • 전민규 (한국기계연구원 지속가능환경연구실) ;
  • 임성일 (한국기계연구원 지속가능환경연구실) ;
  • 오세철 (한국기계연구원 모빌리티동력연구실) ;
  • 류경하 (한국기계연구원 신뢰성평가연구실) ;
  • 이충성 (한국기계연구원 신뢰성평가연구실) ;
  • 강보식 (한국기계연구원 신뢰성평가연구실)
  • Received : 2023.10.31
  • Accepted : 2023.11.27
  • Published : 2023.12.31

Abstract

In this study, a sweep gas - vacuum hybrid type membrane degassing process was proposed for ammonia wastewater treatment. In addition, the ammonia selective recovery of the hybrid type membrane degassing process was also investigated. As a result, the hybrid type membrane degassing process showed better degassing performance (54.9 mg NH3/m2min for 360 min) than the sweep gas type (32.3 mg NH3/m2min) or vacuum type (22 mg NH3/m2min). Additionally, the hybrid type membrane degassing process showed an excellent ammonia selectivity (103 times compared to Na+ Na+, 133 times compared to Ca2+). The ammonia selectivity was appeared to be due to the conversion characteristics of ammonium ion / dissolved ammonia depending on pH. The results in this study are expected to be used in the development of ammonia wastewater treatment and ammonia recovery in the future.

Keywords

Acknowledgement

This work was supported by Korea Institute of Machinery & Materials project (NK245I) and by the New and renewable energy core technology development project of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea(No. 20213030040590).

References

  1. H. Ritchie, "How many people does synthetic fertilizer feed?", Our World Data. (2017). 
  2. C. Zamfirescu, I. Dincer, "Using ammonia as a sustainable fuel", Journal of Power Sources, vol.185, pp. 459-465, (2008).  https://doi.org/10.1016/j.jpowsour.2008.02.097
  3. S. Giddey, S.P.S. Badwal, C. Munnings, M. Dolan, "Ammonia as a renewable energy transportation media", ACS Sustain. Chem. Eng., vol.5, pp. 10231-10239, (2017).  https://doi.org/10.1021/acssuschemeng.7b02219
  4. Green Ammonia Market - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023-2032, https://www.precedenceresearch.com/green-ammonia-market 
  5. J. E. Ryer-Powder, "Health effects of ammonia.", Plant/operations progress vol.10, pp.228-232, (1991).  https://doi.org/10.1002/prsb.720100411
  6. W.M. Lewis Jr, W.A. Wurtsbaugh, H.W. Paerl, "Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters", Environ. Sci. Technol., vol.45, pp. 10300-10305, (2011).  https://doi.org/10.1021/es202401p
  7. J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, "How a century of ammonia synthesis changed the world", Nat. Geosci., vol.1, pp. 636-639, (2008).  https://doi.org/10.1038/ngeo325
  8. E. Giannakis, J. Kushta, A. Bruggeman, J. Lelieveld, "Costs and benefits of agricultural ammonia emission abatement options for compliance with European air quality regulations", Environ. Sci. Eur., vol.31, pp. 1-13, (2019).  https://doi.org/10.1186/s12302-019-0275-0
  9. M.R. Adam, M.H.D. Othman, R.A. Samah, M.H. Puteh, A.F. Ismail, A. Mustafa, M.A. Rahman, J. Jaafar, "Current trends and future prospects of ammonia removal in wastewater: A comprehensive review on adsorptive membrane development", Sep. Purif. Technol., vol.213, pp. 114-132, (2019).  https://doi.org/10.1016/j.seppur.2018.12.030
  10. N. Bernet, N. Delgenes, J.C. Akunna, J.-P. Delgenes, R. Moletta, "Combined anaerobicaerobic SBR for the treatment of piggery wastewater", Water Res., vol.34, pp. 611-619, (2000).  https://doi.org/10.1016/S0043-1354(99)00170-0
  11. S. Feng, S. Xie, X. Zhang, Z. Yang, W. Ding, X. Liao, Y. Liu, C. Chen, "Ammonium removal pathways and microbial community in GAC-sand dual media filter in drinking water treatment", J. Environ. Sci., vol.24, pp. 1587-1593, (2012).  https://doi.org/10.1016/S1001-0742(11)60965-0
  12. F. Mazloomi, M. Jalali, "Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions", J. Environ. Chem. Eng., vol.4, pp 240-249, (2016).  https://doi.org/10.1016/j.jece.2015.11.001
  13. J.W.A. Charrois, S.E. Hrudey, "Breakpoint chlorination and free-chlorine contact time: Implications for drinking water N-nitrosodimethylamine concentrations", Water Res., vol.41, pp. 674-682, (2007).  https://doi.org/10.1016/j.watres.2006.07.031
  14. S. Gu stin, R. Marinsek-Logar, "Effect of pH, temperature and air flow rate on the continuous ammonia stripping of the anaerobic digestion effluent", Process Saf. Environ. Prot., vol.89, pp. 61-66, (2011).  https://doi.org/10.1016/j.psep.2010.11.001
  15. J. Zhang, M. Xie, D. Yang, X. Tong, D. Qu, L. Feng, L. Zhang, "The design of multi-stage open-loop hollow fiber membrane contactor and its application in ammonia capture from hydrolyzed human urine", Water Res., vol.207, pp. 117811, (2021). 
  16. H. Yoon, J. Lee, G. Lee, W. Shin, T. Min, "Membrane degassing with the combination of sweep gas and vacuum pressure for ammonia removal", Environ. Sci. Water Res. Tech., vol.9, pp. 467-473, (2023).  https://doi.org/10.1039/D2EW00822J
  17. H. Yoon, T. Min, G. Lee, H.-t. Kim, W. Shin, "Membrane Degassing Process of Sweep Gasvacuum Combination Type for Ammonia Removal", Journal of The Korean Society of Industry Convergence, vol. 25, pp. 835-842, (2022). 
  18. R. Naim, A.F. Ismail, A. Mansourizadeh, "Effect of non-solvent additives on the structure and performance of PVDF hollow fiber membrane contactor for CO2 stripping", J. Memb. Sci., vol.423, pp. 503-513, (2012).  https://doi.org/10.1016/j.memsci.2012.08.052
  19. D. Bhaumik, S. Majumdar, Q. Fan, K.K. Sirkar, "Hollow fiber membrane degassing in ultrapure water and microbiocontamination", J. Memb. Sci., vol.235, pp. 31-41, (2004).  https://doi.org/10.1016/j.memsci.2003.12.022
  20. G. Noriega-Hevia, J. Serralta, A. Seco, J. Ferrer, "Economic analysis of the scale-u p and implantation of a hollow fibre membrane contactor plant for nitrogen recovery in a full-scale wastewater treatment plant", Separation and Purification Technology, vol.275, pp. 119128, (2021). 
  21. J. Zhang, M. Xie, X. Tong, D. Yang, S. Liu, D. Qu, L. Feng, L. Zhang, "Ammonia capture from human urine to harvest liquid NP compound fertilizer by a submerged hollow fiber membrane contactor: Performance and fertilizer analysis", Sci. Total Environ., vol.768, pp. 144478, (2021). 
  22. M.J. Rothrock Jr, A.A. Szogi, M.B. Vanotti, "Recovery of ammonia from poultry litter using flat gas permeable membranes", Waste Manag., vol.33 pp. 1531-1538, (2013).  https://doi.org/10.1016/j.wasman.2013.03.011
  23. P.J. Dube, M.B. Vanotti, A.A. Szogi, M.C. Garcia-Gonzalez, "Enhancing recovery of ammonia from swine manu re anaerobic digester effluent using gas-permeable membrane technology", Waste Manag., vol.49, pp. 372-377, (2016).  https://doi.org/10.1016/j.wasman.2015.12.011
  24. M.B. Vanotti, P.J. Dube, A.A. Szogi, M.C. Garcia-Gonzalez, "Recovery of ammonia and phosphate minerals from swine wastewater using gas-permeable membranes", Water Res., vol.112, pp. 137-146, (2017).  https://doi.org/10.1016/j.watres.2017.01.045
  25. S. Ortakci, H. Yesil, A.E. Tugtas, "Ammonia removal from chicken manure digestate through vapor pressure membrane contactor (VPMC) and phytoremediation", Waste Manag., vol.85 pp. 186-194, (2019).  https://doi.org/10.1016/j.wasman.2018.12.033
  26. R.O. Surmeli, A. Bayrakdar, B. Calli, "Ammonia recovery from chicken manure digestate using polydimethylsiloxane membrane contactor", J. Clean. Prod., vol.191, pp. 99-104, (2018).  https://doi.org/10.1016/j.jclepro.2018.04.138
  27. T. Kim, C. A. Gorski, B. E. Logan, "Ammonium removal from domestic wastewater using selective battery electrodes", Environmental Science & Technology Letters, vol. 5, pp. 578-583, (2018). 
  28. W. S. Hong, W. H. Shin, D. G. Song, S. H. Jung, Y. J. Kim, H. S. Kim, B. Han, H. J. Kim, K. J. Hong, "DEVICE FOR GENERATING MICRO BUBBLE", Korea Patent No. 10-2010-0068725, (2010). 
  29. W. You, Z. Xu, Z. Dong, Y. Zhao, "Separated performances of ammonium sulphate and ammonium chloride solutions treated by vacuum membrane distillation", Can. J. Chem. Eng., vol.92, pp. 1306-1313, (2014).  https://doi.org/10.1002/cjce.21968
  30. M.S. El-Bourawi, M. Khayet, R. Ma, Z. Ding, Z. Li, X. Zhang, "Application of vacuum membrane distillation for ammonia removal", J. Memb. Sci., vol.301, pp. 200-209, (2007).  https://doi.org/10.1016/j.memsci.2007.06.021
  31. R. Nakhaei-Kohani, E. Taslimi-Renani, F. Hadavimoghaddam, M. R. Mohammadi, A. Hemmati-Sarapardeh, "Modeling solubility of CO2?N2 gas mixtures in aqueous electrolyte systems using artificial intelligence techniques and equations of state", Scientific Reports, vol.12, pp. 3625, (2022).