• Title/Summary/Keyword: survival signaling

Search Result 345, Processing Time 0.03 seconds

Cellular ubiquitin pool dynamics and homeostasis

  • Park, Chul-Woo;Ryu, Kwon-Yul
    • BMB Reports
    • /
    • v.47 no.9
    • /
    • pp.475-482
    • /
    • 2014
  • Ubiquitin (Ub) is a versatile signaling molecule that plays important roles in a variety of cellular processes. Cellular Ub pools, which are composed of free Ub and Ub conjugates, are in dynamic equilibrium inside cells. In particular, increasing evidence suggests that Ub homeostasis, or the maintenance of free Ub above certain threshold levels, is important for cellular function and survival under normal or stress conditions. Accurate determination of various Ub species, including levels of free Ub and specific Ub chain linkages, have become possible in biological specimens as a result of the introduction of the proteomic approach using mass spectrometry. This technology has facilitated research on dynamic properties of cellular Ub pools and has provided tools for in-depth investigation of Ub homeostasis. In this review, we have also discussed the consequences of the disruption of Ub pool dynamics and homeostasis via deletion of polyubiquitin genes or mutations of deubiquitinating enzymes. The common consequence was a reduced availability of free Ub and a significant impact on the function and viability of cells. These observations further indicate that the levels of free Ub are important determinants for cellular protection.

EGF, IGF-I, VEGF and CSF2: Effects on Trophectoderm of Porcine Conceptus

  • Jeong, Wooyoung;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.21-34
    • /
    • 2014
  • The majority of early embryonic mortality in pregnancy occurs during the peri-implantation stage, suggesting that this period is important for conceptus viability and the establishment of pregnancy. Successful establishment of pregnancy in all mammalian species depends on the orchestrated molecular events that transpire at the conceptus-uterine interface during the peri-implantation period. This maternal-conceptus interaction is especially crucial in pigs because in them non-invasive epitheliochorial placentation occurs, in which the pre-implantation phase is prolonged. During the pre-implantation period, conceptus survival and the establishment of pregnancy are known to depend on the developing conceptus receiving an adequate supply of histotroph, which contains a wide range of nutrients and growth factors. Evidence links growth factors including epidermal growth factor (EGF), insulin-like growth factor-I (IGF-I), vascular endothelial growth factor (VEGF), and colony-stimulating factor 2 (CSF2) to embryogenesis or implantation in various mammalian species; however, in the case of pig, little is known about such functions of these growth factors, especially their regulatory mechanisms at the maternal-conceptus interface. Our research group has presented evidence for promising growth factors affecting cellular activities of primary porcine trophectoderm (pTr) cells, and we have identified potential intracellular signaling pathways responsible for the activities induced by these factors. Therefore, this review focuses on promising growth factors at the maternal-conceptus interface regulating the development of the porcine conceptus and playing pivotal roles in implantation events during early pregnancy in pigs.

Ginsenoside-Rp1 inhibits radiation-induced effects in lipopolysaccharide-stimulated J774A.1 macrophages and suppresses phenotypic variation in CT26 colon cancer cells

  • Baik, Ji Sue;Seo, You Na;Yi, Joo Mi;Rhee, Man Hee;Park, Moon-Taek;Kim, Sung Dae
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.843-848
    • /
    • 2020
  • This study investigated the inhibitory effect of ginsenoside-Rp1 (G-Rp1) on the ionizing radiation (IR)-induced response in lipopolysaccharide (LPS)-stimulated macrophages and its effects on the malignancy of tumor cells. G-Rp1 inhibited the activation of IR-induced DNA damage-related signaling molecules and thereby interfered with the IR-increased production of nitric oxide (NO) and interleukin (IL)-1β. The inhibitory effect of G-Rp1 increased the survival rate of mice inoculated with CT26 colon cancer cells by suppressing the phenotypic variation of tumor cells induced by conditioned medium obtained from IR- and LPS-treated J774A.1 macrophages.

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

Molecular Diagnosis for Personalized Target Therapy in Gastric Cancer

  • Cho, Jae Yong
    • Journal of Gastric Cancer
    • /
    • v.13 no.3
    • /
    • pp.129-135
    • /
    • 2013
  • Gastric cancer is the second leading cause of cancer-related deaths worldwide. In advanced and metastatic gastric cancer, the conventional chemotherapy with limited efficacy shows an overall survival period of about 10 months. Patient specific and effective treatments known as personalized cancer therapy is of significant importance. Advances in high-throughput technologies such as microarray and next generation sequencing for genes, protein expression profiles and oncogenic signaling pathways have reinforced the discovery of treatment targets and personalized treatments. However, there are numerous challenges from cancer target discoveries to practical clinical benefits. Although there is a flood of biomarkers and target agents, only a minority of patients are tested and treated accordingly. Numerous molecular target agents have been under investigation for gastric cancer. Currently, targets for gastric cancer include the epidermal growth factor receptor family, mesenchymal-epithelial transition factor axis, and the phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathways. Deeper insights of molecular characteristics for gastric cancer has enabled the molecular classification of gastric cancer, the diagnosis of gastric cancer, the prediction of prognosis, the recognition of gastric cancer driver genes, and the discovery of potential therapeutic targets. Not only have we deeper insights for the molecular diversity of gastric cancer, but we have also prospected both affirmative potentials and hurdles to molecular diagnostics. New paradigm of transdisciplinary team science, which is composed of innovative explorations and clinical investigations of oncologists, geneticists, pathologists, biologists, and bio-informaticians, is mandatory to recognize personalized target therapy.

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Identification of Neuregulin-2 as a novel stress granule component

  • Kim, Jin Ah;Jayabalan, Aravinth Kumar;Kothandan, Vinoth Kumar;Mariappan, Ramesh;Kee, Younghoon;Ohn, Takbum
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.449-454
    • /
    • 2016
  • Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress.

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum;Ho, Jin-Nyoung;Yoon, Sung Hwan;Kang, Ga Young;Hwang, Sang-Gu;Um, Hong-Duck
    • Molecules and Cells
    • /
    • v.28 no.6
    • /
    • pp.583-588
    • /
    • 2009
  • The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo;Song Dae-Hae
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.434-439
    • /
    • 2004
  • Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

Food Spoilage by Pseudomonas spp. (Pseudomonas spp.에 의한 부패)

  • Kim, Kyungmi;Lee, Heeyoung;Lee, Soomin;Park, Beom-Young;Oh, Mi-Hwa;Yoon, Yohan
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.179-186
    • /
    • 2013
  • Pseudomonas spp. are Gram-negative psychrophilic bacteria, which can proliferate at refrigeration temperature. The bacteria produce heat-stable enzymes that can degrade fat and protein in foods. Hence, Pseudomonas spp. are related to the spoilage of milk, dairy products, and meat products under cold storage, causing economic loss. In the food industry, various methods have been used to remove bacteria including Pseudomonas spp. in food-related conditions, but they can be resistant to antimicrobials and sanitizers because they form biofilms regulated by quorum sensing (cell density-dependent cell-to-cell signaling). Since Pseudomonas cells in biofilms can cross-contaminate foods resulting in food spoilage and the survival of food-borne pathogens in food-related conditions, efficient decontamination technology and microbiological criteria should be established to reduce the occurrence of food spoilage by Pseudomonas spp.

  • PDF