DOI QR코드

DOI QR Code

Peroxiredoxin 6 Promotes Lung Cancer Cell Invasion by Inducing Urokinase-Type Plasminogen Activator via p38 Kinase, Phosphoinositide 3-Kinase, and Akt

  • Lee, Seung Bum (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences) ;
  • Ho, Jin-Nyoung (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences) ;
  • Yoon, Sung Hwan (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences) ;
  • Kang, Ga Young (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences) ;
  • Hwang, Sang-Gu (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences) ;
  • Um, Hong-Duck (Laboratory of Radiation Tumor Physiology, Korea Institute of Radiological and Medical Sciences)
  • Received : 2009.09.09
  • Accepted : 2009.09.17
  • Published : 2009.12.31

Abstract

The peroxiredoxin family of peroxidase has six mammalian members (Prx 1-6). Considering their frequent up-regulation in cancer cells, Prxs may contribute to cancer cells' survival in face of oxidative stress. Here, we show that Prx 6 promotes the invasiveness of lung cancer cells, accompanied by an increase in the activity of phosphoinositide 3-kinase (PI3K), the phosphorylation of p38 kinase and Akt, and the protein levels of uPA. Functional studies reveal that these components support Prx 6-induced invasion in the sequence p38 kinase/PI3K, Akt, and uPA. The findings provide a new understanding of the action of Prx 6 in cancer.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation, National Research Foundation of Korea

References

  1. Bae, I.H., Park, M.J., Yoon, S.H., Kang, S.W., Lee, S.S., Choi, K.M., and Um, H.D. (2006). Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt and Sp1. Cancer Res. 66, 4991-4995 https://doi.org/10.1158/0008-5472.CAN-05-4254
  2. Cabane, C., Coldefy, A.S., Yeow, K., and Derijard, B. (2004). The p38 pathway regulates Akt both at the protein and transcriptional activation levels during myogenesis. Cell. Signal. 16, 1405-1415 https://doi.org/10.1016/j.cellsig.2004.05.003
  3. Castagna, A., Antonioli, P., Astner, H., Hamdan, M., Rlghetti, S.C., Perego, P., Zunino, F., and Righetti, P.G. (2004). A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. Proteomics 4, 3246-3267 https://doi.org/10.1002/pmic.200400835
  4. Chang, X.Z., Li, D.Q., Hou, Y.F., Wu, J., Lu, J.S., Di, G.H., Jin, W., Ou, Z.L., Shen, Z.Z., and Shao, Z.M. (2007). Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 9, R76
  5. Chen, W.C., McBride, W.H., Iwamoto, K.S., Barber, C.L., Wan, C.C., Oh, Y.T., Liao, Y.P., Hong, J.H., De Vellis, J., and Shau, H. (2002). Induction of radioprotective peroxiredoxin-ІІ by ionizing irradiation. J. Neurosci. Res. 70, 794-798 https://doi.org/10.1002/jnr.10435
  6. Chung, Y.M., Yoo, Y.D., Park, J.K., Kim, Y.T., and Kim, H.J. (2001). Increased expression of peroxiredoxin confers resistance to cisplatin. Anticancer Res. 21, 1129-1133
  7. Duffy, M.J. (2002). Urokinase-type plasminogen activator: a potent marker of metastatic potential in human cancers. Biochem. Soc. Trans. 30, 207-210 https://doi.org/10.1042/BST0300207
  8. Egeblad, M., and Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2, 161-174 https://doi.org/10.1038/nrc745
  9. Huang, C., Jacobson, K., and Schaller, M.D. (2004). MAP kinase and cell migration. J. Cell Sci. 117, 4619-4628 https://doi.org/10.1242/jcs.01481
  10. Immenschuh, S., and Baumgart-Vogt, E. (2005). Peroxiredoxins, oxidative stress, and cell proliferation. Anntioxid. Redox. Signal. 7, 768-777 https://doi.org/10.1089/ars.2005.7.768
  11. Jiang, B.H., and Liu, L.Z. (2008). PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim. Biophys. Acta 1784, 150-158 https://doi.org/10.1016/j.bbapap.2007.09.008
  12. Karihtala, P., Mantyniemi, A., Kang, S.W., Kinnula, V.L., and Soini, Y. (2003). Peroxiredoxins in breast carcinoma. Clin. Cancer Res. 9, 3418-3424
  13. Kim, D.K., Cho, E.S., Seong, J.K., and Um, H.D. (2001). Adaptive concentrations of hydrogen peroxide suppress cell death by blocking the activation of SAPK/JNK pathway. J. Cell Sci. 114, 4329-4334
  14. Kim, J.H., Bogner, P.N., Ramnath, N., Park, Y., Yu, J., and Park, Y.M. (2007). Elevated peroxiredoxin 1, but not NF-E2-related factor 2, is an independent prognostic factor for disease recurrence and reduced survival in stage I non-small cell lung cancer. Clin. Cacner Res. 13, 3875-3882 https://doi.org/10.1158/1078-0432.CCR-06-2893
  15. Kinnula, V.L., Lehtonen, S., Sormunen, R., Kaarteenaho-Wiik, R., Kang, S.W., Rhee, S.G., and Soini, Y. (2002). Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J. Pathol. 196, 316-323 https://doi.org/10.1002/path.1042
  16. Kropotov, A., Gogvadze, V., Shupliakov, O., Tomilin, N., Serikov, V.B., Tomilin, N.V., and Zhivotovsky, B. (2006). Peroxiredoxin V is essential for protection against apoptosis in human lung carcinoma cells. Exp. Cell Res. 312, 2806-2815 https://doi.org/10.1016/j.yexcr.2006.05.006
  17. Lee, J.B., Yun, S.J., Chae, H.Z., Won, Y.H., Kim, Y.P., and Lee, S.C. (2002). Expression of peroxiredoxin and thioredoxin in dermatological disorders. Br. J. Dermatol. 146, 710-712 https://doi.org/10.1046/j.1365-2133.2002.46845.x
  18. Lee, T.H., Kim, S.U., Yu, S.L., Kim, S.H., Park, D.S., Moon, H.B., Dho, S.H., Kwon, K.S., Kwon, H.J., Han, Y.H., et al. (2003). Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 101, 5033-5038 https://doi.org/10.1182/blood-2002-08-2548
  19. Lee, S.B., Cho, E.S., Yang, H.S., Kim, H., and Um, H.D. (2005a). Serum withdrawal kills U937 cells by inducing a positive mutual interaction between reactive oxygen species and phosphoinositide 3-kinase. Cell. Signal. 17, 197-204 https://doi.org/10.1016/j.cellsig.2004.07.001
  20. Lee, S.B., Hong, S.H., Kim, H., and Um, H.D. (2005b). Co-induction of cell death and survival pathways by phosphoinositide 3- kinase. Life Sci. 78, 91-98 https://doi.org/10.1016/j.lfs.2005.04.035
  21. Lehtonen, S.T., Svensk, A.M., Soini, Y., Paakko, P., Hirvikoski, P., Kang, S.W., Saily, M., and Kinnula, V.L. (2004). Peroxiredoxins, a novel protein family in lung cancer. Int. J. Cancer 111, 514- 521 https://doi.org/10.1002/ijc.20294
  22. Li, D.Q., Wang, L., Fei, F., Hou, Y.F., Luo, J.M., Wei-Chen, Zeng R., Wu, J., Lu, J.S., Di, G.H., Ou, Z.L., et al. (2006). Identification of breast cancer metastasis-associated proteins in an isogenic tumor metastasis model using two-dimensional gel electrophoresis and liquid chromatography-ion trap-mass spectrometry. Pro-teomics 6, 3352-3368 https://doi.org/10.1002/pmic.200500617
  23. Neumann, C.A., Krause, D.S., Carman, C.V., Das, S., Dubey, D.P., Abraham, J.L., Bronson, R.T., Fujiwara, Y., Orkin, S.H., and Van Etten, R.A. (2003). Essential role for the peroxiredoxin Prdx1 in erythrocyte antioxidant defence and tumour suppression. Nature 424, 561-565 https://doi.org/10.1038/nature01819
  24. Orlichenko, L.S., and Radisky, D.C. (2008). Matrix metalloproteinases stimulate epithelial-mesenchymal transition during tumor development. Clin. Exp. Metastasis 25, 593-600 https://doi.org/10.1007/s10585-008-9143-9
  25. Park, S.H., Chung, Y.M., Lee, Y.S., Kim, H.J., Kim, J.S., Chae, H.Z., and Yoo, Y.D. (2000). Antisense of human peroxiredoxin II enhances radiation-induced cell death. Clin. Cancer Res. 6, 4915-4920
  26. Park, M.T., Choi, J.A., Kim, M.J., Um, H.D., Bae, S., Kang, C.M., Cho, C.K., Kang, S., Chung, H.Y., Lee, Y.S., et al. (2003). Suppression of extracellular signal-related kinase and activation of p38 MAPK are two critical events leading to caspase-8- and mitochondria-mediated cell death in phytosphingosine-treated human cancer cells. J. Biol. Chem. 278, 50624-50634
  27. Park, D., Shim, E., Kim, Y., Kim, Y.M., Lee, H., Choe, J., Kang, D., Lee, Y.S., and Jeoung, D. (2008). C-FLIP promotes the motility of cancer cells by activating FAK and ERK, and increasing MMP-9 expression. Mol. Cells 25, 184-195
  28. Rane, M.J., Coxon, P.Y., Powell, D.W., Webster, R., Klein, J.B., Pierce, W., Ping, P., and McLeish, K.R. (2001). p38 Kinasedependent MAPKAPK-2 activation functions as 3-phosphoinositide- dependent kinase-2 for Akt in human neutrophils. J. Biol. Chem. 276, 3517-3523 https://doi.org/10.1074/jbc.M005953200
  29. Reddy, K.B., Nabha, S.M., and Atanaskova, N. (2003). Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 22, 395-403 https://doi.org/10.1023/A:1023781114568
  30. Rhee, S.G., Kang, S.W., Chang, T.S., Jeong, W., and Kim, K. (2001). Peroxiredoxin, a novel family of peroxidases. IUBMB Life 52, 35-41 https://doi.org/10.1080/15216540252774748
  31. Rhee, S.G., Chae, H.Z., and Kim, K. (2005). Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radic. Biol. Med. 38, 1543-1552 https://doi.org/10.1016/j.freeradbiomed.2005.02.026
  32. Samuels, Y., and Ericson, K. (2006). Oncogenic PI3K and its role in cancer. Curr. Opin. Oncol. 18, 77-82 https://doi.org/10.1097/01.cco.0000198021.99347.b9
  33. Smith, L., Welham, K.J., Watson, M.B., Drew, P.J., Lind, M.J., and Cawkwell, L. (2007). The proteomic analysis of cisplatin resistance in breast cancer cells. Oncol. Res. 16, 497-506 https://doi.org/10.3727/096504007783438358
  34. Wang, X., Phelan, S.A., Forsman-Semb, K., Taylor, E.F., Petros, C., Brown, A., Lerner, C.P., and Paigen, B. (2003). Mice with targeted mutation of peroxiredoxin 6 develop normally but are susceptible to oxidative stress. J. Biol. Chem. 278, 25179-25190 https://doi.org/10.1074/jbc.M302706200
  35. Wang, Y., Feinstein, S.I., Manevich, Y., Ho, Y.S., and Fisher, A.B. (2006). Peroxiredoxin 6 gene-targeted mice show increased lung injury with paraquat-induced oxidative stress. Antioxid. Redox. Signal. 8, 229-237 https://doi.org/10.1089/ars.2006.8.229
  36. Wang, Y., Feinstein, S.I., and Fisher, A.B. (2008). Peroxiredoxin 6 as an antioxidant enzyme: protection of lung alveolar epithelial type II cells from $H_2O_2$-induced oxidative stress. J. Cell. Biochem. 104, 1274-1285 https://doi.org/10.1002/jcb.21703
  37. Wood, Z.A., Schroder, E., Harri, J.R., and Poole, L.B. (2003). Structure, mechanism and regulation of peroxiredoxins. Trend Biochem. Sci. 28, 32-40 https://doi.org/10.1016/S0968-0004(02)00003-8
  38. Yanagawa, T., Ishikawa, T., Ishii, T., Tabuchi, K., Iwasa, S., Bannai, S., Omura, K., Suzuki, H., and Yoshida, H. (1999). Peroxiredoxin I expression in human thyroid tumors. Cancer Lett. 145, 127-132 https://doi.org/10.1016/S0304-3835(99)00243-8
  39. Zhang, Q.S., Maddock, D.A., Chen, J.P., Heo, S., Chiu, C., Lai, D., Souza, K., Mehta, S., and Wan, Y.S. (2001). Cytokine-induced p38 activation feedback regulates the prolonged activation of Akt cell survival pathway initiated by reactive oxygen species in response to UV irradiation in human keratinocytes. Int. J. Oncol. 19, 1057-1061

Cited by

  1. Phospholipase A2 Activity of Peroxiredoxin 6 Promotes Invasion and Metastasis of Lung Cancer Cells vol.9, pp.4, 2010, https://doi.org/10.1158/1535-7163.mct-09-0904
  2. Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke-mediated lung inflammatory response and injury vol.36, pp.8, 2009, https://doi.org/10.3109/01902141003754128
  3. Rapid Verification of Candidate Serological Biomarkers Using Gel-based, Label-free Multiple Reaction Monitoring vol.10, pp.9, 2009, https://doi.org/10.1021/pr2002098
  4. Proteomic analysis of pancreatic juice for the identification of biomarkers of pancreatic cancer vol.137, pp.8, 2009, https://doi.org/10.1007/s00432-011-0992-2
  5. Discovery of Biomarkers for Osteosarcoma by Proteomics Approaches vol.2012, pp.None, 2009, https://doi.org/10.1155/2012/425636
  6. A Xenograft Mouse Model Coupled with In-depth Plasma Proteome Analysis Facilitates Identification of Novel Serum Biomarkers for Human Ovarian Cancer vol.11, pp.2, 2009, https://doi.org/10.1021/pr200603h
  7. Pharmacological antioxidant strategies as therapeutic interventions for COPD vol.1822, pp.5, 2009, https://doi.org/10.1016/j.bbadis.2011.11.004
  8. Curcumin abates hypoxia-induced oxidative stress based-ER stress-mediated cell death in mouse hippocampal cells (HT22) by controlling Prdx6 and NF-κB regulation vol.304, pp.7, 2009, https://doi.org/10.1152/ajpcell.00345.2012
  9. Protective Effects of Andrographolide Analogue AL-1 on ROS-Induced RIN-mβ Cell Death by Inducing ROS Generation vol.8, pp.6, 2013, https://doi.org/10.1371/journal.pone.0063656
  10. Nicotine-induced upregulation of antioxidant protein Prx 1 in oral squamous cell carcinoma vol.58, pp.16, 2013, https://doi.org/10.1007/s11434-013-5779-1
  11. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells vol.8, pp.None, 2009, https://doi.org/10.3389/fncel.2014.00214
  12. Anti-Cancer Effect of Thiacremonone through Down Regulation of Peroxiredoxin 6 vol.9, pp.3, 2009, https://doi.org/10.1371/journal.pone.0091508
  13. Preparation and antitumor effect of a toxin-linked conjugate targeting vascular endothelial growth factor receptor and urokinase plasminogen activator vol.240, pp.2, 2009, https://doi.org/10.1177/1535370214547154
  14. Peroxiredoxin 6 triggers melanoma cell growth by increasing arachidonic acid-dependent lipid signalling vol.471, pp.2, 2015, https://doi.org/10.1042/bj20141204
  15. Epigenetic regulation of peroxiredoxins: Implications in the pathogenesis of cancer vol.242, pp.2, 2009, https://doi.org/10.1177/1535370216669834
  16. Prognostic roles of mRNA expression of peroxiredoxins in lung cancer vol.11, pp.None, 2009, https://doi.org/10.2147/ott.s181314
  17. Peroxiredoxins in Cancer and Response to Radiation Therapies vol.8, pp.1, 2009, https://doi.org/10.3390/antiox8010011
  18. Overexpression and biological function of PRDX6 in human cervical cancer vol.11, pp.9, 2009, https://doi.org/10.7150/jca.39892
  19. Proteomic analysis of extracellular vesicles identified PI3K pathway as a potential therapeutic target for cabazitaxel‐resistant prostate cancer vol.81, pp.9, 2009, https://doi.org/10.1002/pros.24138