• Title/Summary/Keyword: surgical simulation

Search Result 154, Processing Time 0.026 seconds

Virtual Reality and 3D Printing for Craniopagus Surgery

  • Kim, Gayoung;Shim, Eungjune;Mohammed, Hussein;Kim, Youngjun;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.4 no.1
    • /
    • pp.9-12
    • /
    • 2017
  • Purpose Surgery for separating craniopagus twins involves many critical issues owing to complex anatomical features. We demonstrate a 3D printed model and virtual reality (VR) technologies that could provide valuable benefits for surgical planning and simulation, which would improve the visualization and perception during craniopagus surgery. Material & Methods We printed a 3D model extracted from CT images of craniopagus patients using segmentation software developed in-house. Then, we imported the 3D model to create the VR environment using 3D simulation software (Unity, Unity Technologies, CA). We utilized the HTC Vive (HTC & Valve Corp) head-mount-display for the VR simulation. Results We obtained the 3D printed model of craniopagus patients and imported the model to a VR environment. Manipulating the model in VR was possible, and the 3D model in the VR environment enhanced the application of user-friendly 3D modeling in surgery for craniopagus twins. Conclusion The use of the 3D printed model and VR has helped understand complicated anatomical structures of craniopagus patients and has made communicating with other medical surgeons in the field much easier. Further, interacting with the 3D model is possible in VR, which enhances the understanding of the craniopagus surgery as well as the success rate of separation surgery while providing useful information on diagnosing and surgery planning.

Evaluation of Electron Boost Fields based on Surgical Clips and Operative Scars in Definitive Breast Irradiation (유방보존술 후 방사선치료에서 수술 흉터와 삽입된 클립을 이용한 전자설 추가 방사선 조사야 평가)

  • Lee, Re-Na;Chung, Eun-Ah;Lee, Ji-Hye;Suh, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.236-242
    • /
    • 2005
  • Purpose: To evaluate the role of surgical clips and scars in determining electron boost field for early stage breast cancer undergoing conserving surgery and postoperative radiotherapy and to provide an optimal method in drawing the boost field. Materials and Methods: Twenty patients who had $4{\sim}7$ surgical clips in the excision cavity were selected for this study. The depth informations were obtained to determine electron energy by measuring the distance from the skin to chest wall (SCD) and to the clip implanted in the most posterior area of tumor bed. Three different electron fields were outlined on a simulation film. The radiological tumor bed was determined by connecting all the clips implanted during surgery Clinical field (CF) was drawn by adding 3 cm margin around surgical scar. Surgical field (SF) was drawn by adding 2 cm margin around surgical clips and an Ideal field (IF) was outlined by adding 2 cm margin around both scar and clips. These fields were digitized into our planning system to measure the area of each separate field. The areas of the three different electron boost fields were compared. Finally, surgical clips were contoured on axial CT images and dose volume histogram was plotted to investigate 3-dimensional coverage of the clips. Results : The average depth difference between SCD and the maximal clip location was $0.7{\pm}0.55cm$. Greater difference of 5 mm or more was seen in 12 patients. The average shift between the borders of scar and clips were 1.7 1.2, 1.2, and 0.9 cm in superior, inferior, medial, and lateral directions, respectively. The area of the CF was larger than SF and IF in 6y20 patients. In 15/20 patients, the area difference between SF and if was less than 5%. One to three clips were seen outside the CF in 15/20 patients. In addition, dosimetrically inadequate coverage of clips (less than 80% of prescribed dose) were observed in 17/20 patients when CF was used as the boost field. Conclusion: The electron field determined from clinical scar underestimates the tumor bed in superior-inferior direction significantly and thereby underdosing the tissue at risk. The electron field obtained from surgical clips alone dose not cover the entire scar properly As a consequence, our technique, which combines the surgical clips and clinical scars in determining electron boost field, was proved to be effective in minimizing the geographical miss as well as normal tissue complications.

Development of Korean Teaching Model for Surgical Procedures in Trauma -Essential Surgical Procedures in Trauma Course-

  • Kim, Hohyun;Park, Chan-Yong;Cho, Hyun-Min;Yeo, Kwang-Hee;Kim, Jae Hun;Yu, Byungchul;Go, Seung-Je;Kwon, Oh Sang
    • Journal of Trauma and Injury
    • /
    • v.32 no.1
    • /
    • pp.8-16
    • /
    • 2019
  • Purpose: The Essential Surgical Procedures in Trauma (ESPIT) course was developed as a model to teach necessary surgical procedures to trauma physicians. Its goals are to improve knowledge, self-confidence, and technical competence. Methods: The ESPIT course consisted of five lectures and a porcine lab operative experience. The ESPIT course has been run seven times between February 2014 and April 2016. ESPIT participants completed a questionnaire to assess self-efficacy regarding essential surgical procedures in trauma before and immediately after taking the ESPIT course. Sixty-three participants who completed both pre- and post-course questionnaires on self-efficacy were enrolled in this study. Results: The overall post-ESPIT mean self-efficacy score was higher than the pre-ESPIT mean self-efficacy score ($8.3{\pm}1.30$ and $4.5{\pm}2.13$, respectively) (p<0.001). Self-efficacy was significantly improved after the ESPIT course in general surgeons (p<0.001), thoracic and cardiovascular surgeons (p<0.001), emergency medicine doctors, and others (neurosurgeons, orthopedic surgeons) (p<0.001). The differences in self-efficacy score according to career stage (<1 year, 1-3 years, 3-5 years, and >5 years) were also statistically significant (p<0.001). Conclusions: The data of the ESPIT participants indicated that they felt that the ESPIT course improved their self-efficacy with regard to essential surgical procedures in trauma. The ESPIT course may be an effective strategy for teaching surgical procedures, thus promoting better management of traumatic injuries.

A Simulation System of Total Knee Replacement Surgery for Extracting 3D Surgical Parameters (슬관절 전치환술용 3차원 시술변수 추출 시스템)

  • Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.5
    • /
    • pp.315-322
    • /
    • 2011
  • The goal of total knee replacement (TKR) surgery is to replace patient's knee joint with artificial implants in order to restore normal knee joint functions. Since mismatched knee implants often cause a critical balancing problem and short durability, designing a well-fitted implant to a patient's knee joint is essential to improve surgical outcomes. We developed a software system that three-dimensionally (3D) simulates TKR surgery based upon 3D knee models reconstructed from computed tomography (CT) imaging. The main task of the system was to extract precise 3D anatomical parameters of a patient's knee that were directly used to determine a custom fit implant and to virtually perform TKR surgery. The virtual surgery was simulated by amputating a 3D knee model and positioning the determined implant components on the amputated knee. The test result shows that it is applicable to derive surgical parameters, determine individualized implant components, rehearse the whole surgical procedure, and train medical staff or students for actual TKR surgery. The feasibility and verification of the proposed system is described with examples.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

The Chicken Thigh Adductor Profundus Free Muscle Flap: A Novel Validated Non-Living Microsurgery Simulation Training Model

  • Pafitanis, Georgios;Serrar, Yasmine;Raveendran, Maria;Ghanem, Ali;Myers, Simon
    • Archives of Plastic Surgery
    • /
    • v.44 no.4
    • /
    • pp.293-300
    • /
    • 2017
  • Background Simulation training is becoming an increasingly important component of skills acquisition in surgical specialties, including Plastic Surgery. Non-living simulation models have an established place in Plastic Surgical microsurgery training, and support the principles of replacement, reduction and refinement of animal use. A more sophisticated version of the basic chicken thigh microsurgery model has been developed to include dissection of a type 1-muscle flap and is described and validated here. Methods A step-by-step dissection guide on how to perform the chicken thigh adductor profundus free muscle flap is demonstrated. Forty trainees performed the novel simulation muscle flap on the last day of a 5-day microsurgery course. Pre- and post-course microvascular anastomosis assessment, along with micro dissection and end product (anastomosis lapse index) assessment, demonstrated skills acquisition. Results The average time to dissect the flap by novice trainees was $82{\pm}24$ minutes, by core trainees $90{\pm}24$ minutes, and by higher trainees $64{\pm}21$ minutes (P=0.013). There was a statistically significant difference in the time to complete the anastomosis between the three levels of training (P=0.001) and there was a significant decrease in the time taken to perform the anastomosis following course completion (P<0.001). Anastomosis lapse index scores improved for all cohorts with post-test average anastomosis lapse index score of $3{\pm}1.4$ (P<0.001). Conclusions The novel chicken thigh adductor profundus free muscle flap model demonstrates face and construct validity for the introduction of the principles of free tissue transfer. The low cost, constant, and reproducible anatomy makes this simulation model a recommended addition to any microsurgical training curriculum.

A New Model for Basic Microsurgical Nerve Repair Simulation: Making the Most Out of Less

  • Bogdan Ioncioaia
    • Archives of Plastic Surgery
    • /
    • v.50 no.2
    • /
    • pp.220-221
    • /
    • 2023
  • Microsurgical peripheral nerve repair is a technical and challenging procedure that requires thorough training prior to a real-life operating theater scenario. While the gold standard in training remains training on biological living peripheral nerve specimen, various inanimate models of nerve repair simulation have been described in the past years. The textile elastic band (TEB) obtained from a surgical mask was either covered with a fine silicone sheath or was left bare and was used afterward for end-to-end coaptation. The average diameter of the TEB was 2 mm, similar with the nerves in the distal hand and can be easily crafted out of accessiblematerials such as a surgicalmask and silicone sealant. The silicone that covers the TEB offers more fidelity to the simulation for microsurgical nerve coaptation. The TEB model offers an affordable, available, and easy-to-craft alternative to the existing models for peripheral nerve repair simulation and serves as a good initiation tool before moving on to biological specimens.

Virtual Reality for Dental Implant Surgical Education (가상현실을 이용한 치과 임플란트 수술 교육)

  • Moon, Seong-Yong;Choi, Bong-Du;Moon, Young-Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.169-174
    • /
    • 2016
  • In this study, we evaluated the virtual reality model for dental implant surgery and discussed about the method to make the surgical environment for virtual reality with practical patient data. The anatomical model for patient face was fabricated by facial and oral scan data based on CT data. The simulation scenario was composed step by step fashion with Unity3D. From incision and sinus bone graft procedure which is needed to this patient model to implant installation and bone graft was included in this scenario. We used the HMD and leap motion for immersiveness and feeling of real operation. Twenty training doctor was attended this simulation study, and surveyed their satisfactory results by questionnaire. Implant surgery education program was showed the possibilities of educational tool for dental students and training doctors. Virtual reality for surgical education with HMD and leap motion had advantages, in terms of cheap prcie, easy access.

The Reliability of Preoperative Simulation Surgery Planning for Distraction Osteogensis in Craniosynostosis Patients

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2016
  • Background Craniosynostosis management using distraction osteogensis represent a challenge for surgeons due to the great variability of the skull deformity even within the same etiology. The ability to apply the simulation surgery for improving the preoperative planning for distraction osteogensis could improve the results.Planning and Simulation 14 patients presented with craniosynostosis had been subjected to simulation surgery prior to real surgery. 3D CT scans was obtained upon patient admission. Adjustment of all skull position to Frankfort horizontal plane was done. 3 different distraction osteogensis plans were done for each patient according to the skull morphology. For each plane, movement for each bone segment was done according to the pre-planned distraction vectors. Also the distances of distractions were pre-determined according to the cephalic index as well as brain volume. Intraoperatively, we choose the most appropriate plan for the patient by the surgeon. At the end of distraction, 3D CT scan was obtained, and was compared to the simulation plan. Also the distance and the direction of distraction was compared to that of the plan. Accordingly, the distance was almost matching that of the simulation surgery, however the vector of distraction was not matched.Conclusion Preoperative stimulation planning for craniosynostosis patient is very valuable tool in the surgical management of craniosynostosis patients.