• Title/Summary/Keyword: surfaces in the Euclidean 3-space

Search Result 53, Processing Time 0.023 seconds

CHENG -YAU OPERATOR AND GAUSS MAP OF TRANSLATION SURFACES

  • Kim, Dong Seo;Kim, Dong-Soo
    • The Pure and Applied Mathematics
    • /
    • v.28 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • We study translation surfaces in the Euclidean 3-space ��3 and the Gauss map N with respect to the so-called Cheng-Yau operator ☐. As a result, we prove that the only translation surfaces with Gauss map N satisfying ☐N = AN for some 3 × 3 matrix A are the flat ones. We also show that the only translation surfaces with Gauss map N satisfying ☐N = AN for some nonzero 3 × 3 matrix A are the cylindrical surfaces.

A CHARACTERIZATION OF MAXIMAL SURFACES IN TERMS OF THE GEODESIC CURVATURES

  • Eunjoo Lee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.67-74
    • /
    • 2024
  • Maximal surfaces have a prominent place in the field of differential geometry, captivating researchers with their intriguing properties. Bearing a direct analogy to the minimal surfaces in Euclidean space, investigating both their similarities and differences has long been an important issue. This paper is aimed to give a local characterization of maximal surfaces in 𝕃3 in terms of their geodesic curvatures, which is analogous to the minimal surface case presented in [8]. We present a classification of the maximal surfaces under some simple condition on the geodesic curvatures of the parameter curves in the line of curvature coordinates.

BOUR'S THEOREM IN 4-DIMENSIONAL EUCLIDEAN SPACE

  • Hieu, Doan The;Thang, Nguyen Ngoc
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2081-2089
    • /
    • 2017
  • In this paper we generalize 3-dimensional Bour's Theorem to the case of 4-dimension. We proved that a helicoidal surface in $\mathbb{R}^4$ is isometric to a family of surfaces of revolution in $\mathbb{R}^4$ in such a way that helices on the helicoidal surface correspond to parallel circles on the surfaces of revolution. Moreover, if the surfaces are required further to have the same Gauss map, then they are hyperplanar and minimal. Parametrizations for such minimal surfaces are given explicitly.

STUDY ON BCN AND BAN RULED SURFACES IN 𝔼3

  • Abd-Ellah, Hamdy N.;Omran, Abdelrahim Khalifa
    • Korean Journal of Mathematics
    • /
    • v.25 no.4
    • /
    • pp.513-535
    • /
    • 2017
  • As a continuation to the study in [8, 12, 15, 17], we construct bi-conservative central normal (BCN) and bi-conservative asymptomatic normal (BAN) ruled surfaces in Euclidean 3-space ${\mathbb{E}}^3$. For such surfaces, local study is given and some examples are constructed using computer aided geometric design (CAGD).

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.1
    • /
    • pp.133-144
    • /
    • 2017
  • In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.

SOME CHARACTERIZATIONS OF CANAL SURFACES

  • Kim, Young Ho;Liu, Huili;Qian, Jinhua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.461-477
    • /
    • 2016
  • This work considers a particular type of swept surface named canal surfaces in Euclidean 3-space. For such a kind of surfaces, some interesting and important relations about the Gaussian curvature, the mean curvature and the second Gaussian curvature are found. Based on these relations, some canal surfaces are characterized.

RIBAUCOUR TRANSFORMATIONS OF THE SURFACES WITH CONSTANT POSITIVE GAUSSIAN CURVATURES IN THE 3-DIMENSIONAL EUCLIDEAN SPACE

  • PARK, Joon-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.165-175
    • /
    • 2006
  • We associate the surfaces of constant Gaussian curvature K = 1 with no umbilics to a subclass of the solutions of $O(4,\;1)/O(3){\times}O(1,\;1)-system$. From this correspondence, we can construct new K = 1 surfaces from a known K = 1 surface by using a kind of dressing actions on the solutions of this system.

Machining Tool Path Generation for Point Set

  • Park, Se-Youn;Shin, Ha-Yong
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • As the point sampling technology evolves rapidly, there has been increasing need in generating tool path from dense point set without creating intermediate models such as triangular meshes or surfaces. In this paper, we present a new tool path generation method from point set using Euclidean distance fields based on Algebraic Point Set Surfaces (APSS). Once an Euclidean distance field from the target shape is obtained, it is fairly easy to generate tool paths. In order to compute the distance from a point in the 3D space to the point set, we locally fit an algebraic sphere using moving least square method (MLS) for accurate and simple calculation. This process is repeated until it converges. The main advantages of our approach are : (1) tool paths are computed directly from point set without making triangular mesh or surfaces and their offsets, and (2) we do not have to worry about no local interference at concave region compared to the other methods using triangular mesh or surface model. Experimental results show that our approach can generate accurate enough tool paths from a point set in a robust manner and efficiently.

CHARACTERIZATION OF THE HELICOID AS RULED SURFACES WITH POINTWISE 1-TYPE GAUSS MAP

  • Choi, Mie-Kyung;Kim, Young-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.753-761
    • /
    • 2001
  • We introduce the notion of Gauss map of pointwise 1-type on ruled surfaces in the Euclidean 3-space for which vector valued functions is neither trivial nor it extends or coincides with the usual notion of 1-type, in general. We characterize the minimal helicoid in terms of it and give a complete classification of the ruled surfaces with pointwise 1-type Gauss map.

  • PDF