• Title/Summary/Keyword: surface-coated

Search Result 3,102, Processing Time 0.028 seconds

A Basic Study of Development of Electrostatic Induction Motor (정전유도형모터의 개발을 위한 기초연구)

  • 이동훈
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.58-68
    • /
    • 1994
  • A miniature size electrostatic induction motor has been fabricated and studied parameters Influencing dominantly to the motor speed, such as a voltage and frequency of the 3 phase ac power source supplied to the stator of fabricated motor, the surface resistivity and relative dielectric constant of the rotor surface materials and the concurrently calculated relaxation time constants. It is found that the higher resitivity and/or the higher relative dielectric constant, concurrently the longer relaxation time constant of the rotor surface materials make the motor speed get higher speed. In case of discrete coated rotor surface it is found that the motor speed was increased logarithmically as narrow as width of the discrete coated Ti. And the degree of width of discrete coated Ti to the axial direction of the rotor was 60$^{\circ}$ and 150$^{\circ}$, the motor has got a 125% higher than that at the degree of 0$^{\circ}$.

  • PDF

Bond Performance of FRP Reinforcing Bar by Geometric Surface Change (콘크리트 보강용 FRP 보강근의 표면형상 변화에 따른 부착 특성)

  • Park, Chan-Gi;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.69-77
    • /
    • 2004
  • FRP rebar has low bond performance than steel rebar. Usually, FRP rebar has about 60% of bond strength of steel rebar. Without adequate bond to concrete, the full composite action between reinforcement and concrete matrix can not be achieved. Therefore, FRP rebars must also have surface deformations that provide good bond to concrete. The purpose of this research was decided an optimum surface deformation patterns through bond test of FRP rebar. Eighteen surface deformation patterns of FRP rebar with widely different geometries were investigated. Based on the test results, we established optimum surfale deformation pattern. Bond tests were performed for three types of surface deformation patterns of FRP rebar including sand coated rebar, ribbed rebar, and wrapped and sand coated rebar that commercially available, and two types of FRP rebar including CFRP, GFRP rebars that optimum surface deformation pattern is applied. According to bond test results, FRP rebars that optimum surface deformation pattern is applied were found to have better bond strength with concrete than currently using FRP rebar.

Effects of hairline treatment on surface blackening and thermal diffusion of Zn-Al-Mg alloy-coated steel sheet (Zn-Al-Mg 합금도금강판의 헤어라인 처리가 표면흑색화 및 열확산도에 미치는 영향)

  • Jin Sung Park;Duck Bin Yun;Sang Heon Kim;Tae Yeob Kim;Sung Jin Kim
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.1
    • /
    • pp.69-76
    • /
    • 2023
  • The effects of hairline treatment on surface blackening and thermal diffusion behaviors of Zn-Al-Mg alloy coated steel sheet were evaluated by the three-dimensional surface profiler and laser-flash technique. The metallographic observation of coating damages by hairline treatments showed that several cracks were initiated and propagated along the interface between primary Zn/eutectic phases. As the hairline processing became more severe, the crack occurrence frequency in eutectic phase of coating layer and the surface roughness increased, which had a proportional relationship with the level of blackening on the coating surface. In addition, the higher interfacial areas of the blackened coating surface, caused by the hairline process, led to an increase in thermal diffusivity and conductivity of the coated steel sheet. On the other hand, when the coating damage by hairline treatment was excessive and the steel substrate was exposed, there was little difference between the thermal diffusivity/conductivity of the untreated sample though the blackening degree was higher than that of untreated sample. This work suggests that the increase in the surface areas of the coating layer without exposure to steel substrate through hairline treatment can be one of the effective technical strategies for the development of Zn-Al-Mg alloy coated steel sheets with higher blackening level and thermal diffusivity.

A STUDY ON MECHANICAL PROPERTIES OF TiN, ZrN AND WC COATED FILM ON THE TITANIUM ALLOY SURFACE

  • Oh, Dong-Joon;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.740-750
    • /
    • 2006
  • Statement of problems. In an attempt to reduce screw loosening, dry lubricant coatings such as pure gold or tefron have been applied to the abutment screw. However, under repeated tightening and loosening procedures, low wear resistance and adhesion strength of coating material produced free particles on the surface of abutment screw and increased frictional resistance resulting in screw tightening problems. Purpose. The aim of this study was to compare friction coefficient, adhesion strength, vickers hardness and evaluate coating surface of titanium alloy specimens coated with TiN(titanium nitride), ZrN(zirconium nitride) and WC(tungsten carbide). Material and method. Titanium alloy(Ti-6Al-4V) discs of 12mm in diameter and 1mm in thickness divided into 4 groups. TiN, ZrN and WC was coated for the specimens of 3 groups respectively, and those of 1 group were not coated. Each group was made up of 4 specimens. In this study, sputtering method was used among the PVD(Physical Vapor Deposition) techniques available for TiN, ZrN and WC coatings. Friction coefficient, adhesion strength, vickers hardness and coating surface of 4 groups were measured. Results. 1. For all three coating conditions, friction coefficient was significantly decreased. Especially, ZrN coated surface showed the lowest value. $TiN(0.39{\pm}0.02)$, $ZrN(0.24{\pm}0.01)$, $WC(0.31{\pm}0.03)$. 2. TiN coating showed the highest adhesion strength, however ZrN coating had the lowest value. $TiN(25.3N{\pm}1.6)$, $ZrN(14.8N{\pm}0.6)$, $ WC(18.4N{\pm}0.7)$. 3. Vickers hardness of all three coatings was remarkably increased as compared with that of none coated specimen. TiN coating had the highest Vickers hardness, however WC coating showed the lowest value. $TiN(1865.2{\pm}33.8)$, $ZrN(1814.4{\pm}18.6)$, $WC(1008.5{\pm}35.9)$. 4. The ZrN or WC coated specimen showed a homogeneous and smooth surface, however the rough surface with defects was observed for TiN coating. Conclusions. When TiN, ZrN and WC coating applied to the abutment screw, frictional resistance would be reduced, as a result, the greater preload and prevention of the screw loosening could be expected.

Corrosion Characteristics of TiN and ZrN Coated Orthodontic Brackets (TiN 및 ZrN 코팅된 교정용 브라켓의 부식특성)

  • Kim, W.G.;Kim, D.Y.;Choe, H.C.
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.163-168
    • /
    • 2008
  • The dental orthodontic bracket requires good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. The objective of this study was to investigate the effects of TiN and ZrN coating on corrosion resistance of orthodontic brackets using various electrochemical methods. Brackets manufactured by Ormco Co. were used, respectively, for experiment. Ion plating was carried out for coatings of bracket using Ti and Zr coating materials with nitrogen gas. Ion plated surface of each specimen was observed with field emission scanning electron microscopy(FE-SEM), energy dispersive Xray spectroscopy(EDS) and electrochemical tester. The corrosion potential of the TiN and ZrN coated bracket was comparatively high. The current density of TiN and ZrN coated bracket was smaller than that of non-coated bracket in 0.9% NaCl solution. Pit nucleated at angle of bracket slot.

Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications (에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동)

  • Kim, Kyung Tae;Woo, Jae Yeol;Yu, Ji Hun;Lee, Hye Moon;Lim, Tae Soo;Choi, Yoon Jeong;Kim, Chang Kee
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx (화학기상증착 코팅로의 용량에 따른 탄소 코팅 SiOx의 물리적 특성 변화 분석)

  • Maeng, Seokju;Kwak, Woojin;Park, Heonsoo;Kim, Yong-Tae;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.55 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.

A STUDY ON THE CHANGE OF IMPLANT STABILITY USING RESONANCE FREQUENCY ANALYSIS

  • Park Chan-Jin;Kim Yung-Soo;Kim Chang-Whe;Cho Lee-Ra;Yi Yang-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.271-287
    • /
    • 2003
  • Statement of problem: Resonance frequency analysis (RFA) has been increasingly served as a non-invasive and objective method for clinical monitoring of implant stability. Many clinical studies must be required for standardized baseline data using RFA. Purpose: This study was performed to evaluate RFA value changes in two stage surgery group and one stage surgery group in patients. Material and method: Forty-seven mandibles in consecutively implant installed patients were selected for this study and 141 fixtures were installed. Ninety-three fixtures were double threaded, machined surface design ($Br{\aa}anemark^{(R)}$ MK III, Nobel Biocare AB, Goteborg, Sweden) and 48 fixtures were root form, threaded, HA-coated surface one ($Replace^{TM}$, Steri-Oss/Nobel Biocare AB, USA). Among those, each 10 fixture was installed in one stage group patients. ISQ values were measured using $Osstell^{TM}$ (Integration Diagnostics Ltd. Sweden) during fixture installation, at healing abutment connection and in the loading period for two stage surgery group patients and during at each 4, 6, 8, 10, 12week and in the loading phase for one stage surgery group patients and evaluated the changes according to the time and fixture type. Results: In two stage surgery group, mean and SO of ISQ values of machined surface implants were $76.85{\pm}3.74,\;75.76{\pm}5.04,\;75.73{\pm}4.41$ and those of HA-coated surface implant were $75.05{\pm}6.23,\;77.58{\pm}5.23,\;78.32{\pm}4.29$ during fixtures installation, at healing abutment connection and in the loading period, respectively. In one-stage surgery group, the ISQ values of machined surface and HA-coated surface implants decreased until 4 or 6 week and maintained at plateau for 1-3 week and increased to the loading period. Conclusions: Machined and HA-coated surface implants showed minimal ISQ changes with time if they were installed at the sites showing at least intact cortical plate and good bone qualities. And HA-coated implants had a tendency to show somewhat increased ISQ values with time.

Surface Hardening of SM45C Steel by CO2 Laser (CO2 레이저를 이용한 SM45C 강의 표면경화)

  • Park, J.S.;Lee, O.Y.;Song, K.H.;Han, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • The specimen for laser hardening have been carried out using SM45C which is coated with black paint or graphite for better absorption. Segmented mirror was used in order to produce a square beam ($10{\times}10mm$) at the surface with a homegeneous intensity distribution across the beam. $CO_2$-Laser power was changed from 2kW to 4kW and transfer velocity was varied from 0.1m/min to 2.0m/min. The maximum hardness and case depth of SM45C steel are 790Hv and 1.5mm by laser hardening. When the surface of specimens was melted during laser hardening. the surface hardness of SM45C steel was decreased. The surface hardness of 2 layer coated specimen(black paint: $15.4{\mu}m$, graphite coating: $9.5{\mu}m$) was increased than that of 1 layer coated specimen. It is desirable to prepare 2 or more coating layer on the steel surface in order to sufficient case depth and hardness in laser hardening. The graphite coating on the specimen surface was obtained more uniform temperature distribution than black paint coating in laser hardening process.

  • PDF

Estimation of Hardening Layer Depths in Laser Surface Hardening Processes Using Neural Networks (레이져 표면 경화 공정에서 신경회로망을 이용한 경화층 깊이 예측)

  • Woo, Hyun Gu;Cho, Hyung Suck;Han, You Hie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.52-62
    • /
    • 1995
  • In the laser surface hardening process the geometrical parameters, especially the depth, of the hardened layer are utilized to assess the integrity of the hardening layer quality. Monitoring of this geometrical parameter ofr on-line process control as well as for on-line quality evaluation, however, is an extremely difficult problem because the hardening layer is formed beneath a material surface. Moreover, the uncertainties in monitoring the depth can be raised by the inevitable use of a surface coating to enhance the processing efficiency and the insufficient knowledge on the effects of coating materials and its thicknesses. The paper describes the extimation results using neural network to estimate the hardening layer depth from measured surface temperanture and process variables (laser beam power and feeding velocity) under various situations. To evaluate the effec- tiveness of the measured temperature in estimating the harding layer depth, estimation was performed with or without temperature informations. Also to investigate the effects of coating thickness variations in the real industry situations, in which the coating thickness cannot be controlled uniform with good precision, estimation was done over only uniformly coated specimen or various thickness-coated specimens. A series of hardening experiments were performed to find the relationships between the hardening layer depth, temperature and process variables. The estimation results show the temperature informations greatly improve the estimation accuracy over various thickness-coated specimens.

  • PDF