DOI QR코드

DOI QR Code

Effect of chemical vapor depositon capacity on the physical characteristics of carbon-coated SiOx

화학기상증착 코팅로의 용량에 따른 탄소 코팅 SiOx의 물리적 특성 변화 분석

  • Maeng, Seokju (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kwak, Woojin (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Park, Heonsoo (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 맹석주 (인하대학교 화학.화학공학 융합학과) ;
  • 곽우진 (인하대학교 화학.화학공학 융합학과) ;
  • 박헌수 (인하대학교 화학.화학공학 융합학과) ;
  • 김용태 (인하대학교 화학.화학공학 융합학과) ;
  • 최진섭 (인하대학교 화학.화학공학 융합학과)
  • Received : 2022.12.07
  • Accepted : 2022.11.26
  • Published : 2022.12.31

Abstract

Silicon-based materials are one of the most promising anode active materials in lithium-ion battery. A carbon layer decorated on the surface of silicon particles efficiently suppresses the large volume expansion of silicon and improves electrical conductivity. Carbon coating through chemical vapor deposition (CVD) is one of the most effective strategies to synthesize carbon- coated silicon materials suitable for mass production. Herein, we synthesized carbon coated SiOx via pilot scale CVD reactor (P-SiOx@C) and carbon coated SiOx via industrial scale CVD reactor (I-SiOx@C) to identify physical characteristic changes according to the CVD capacity. Reduced size silicon domains and local non-uniform carbon coating layer were detected in I-SiOx@C due to non-uniform temperature distribution in the industrial scale CVD reactor with large capacity, resulting in increased surface area due to severe electrolyte consumption.

Keywords

Acknowledgement

본 연구는 산업통상자원부 기술혁신사업(제 20016056호, 대용량 실리콘계 CVD 카본코팅 제조기술 및 장비개발(2차년도))의 지원을 받아 수행됐다.

References

  1. C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol, 3 (2008) 31-35. https://doi.org/10.1038/nnano.2007.411
  2. S. W. Lee, M. T McDowell, J. W. Choi, Y. Cui, Anomalous shape changes of silicon nanopillars by electrochemical lithiation, Nano Lett, 11 (2011) 3034-3039. https://doi.org/10.1021/nl201787r
  3. C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chemistry, 5 (2013) 1042-1048. https://doi.org/10.1038/nchem.1802
  4. D. Lin, Z. Lu, P. C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu, Y. Cui, A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries, Energy Environ. Sci., 8 (2015) 2371-2376. https://doi.org/10.1039/C5EE01363A
  5. J. Zhang, C. Zhang, Z. Liu, J. Zheng, Y. Zuo, C. Xue, C. Li, B. Cheng, High-performance ball- milled SiOx anodes for lithium ion batteries. J. Power Sources, 339 (2017) 86-92. https://doi.org/10.1016/j.jpowsour.2016.11.044
  6. M. Li, J. Gu, X. Feng, H. He, C. Zeng, Amorphous-silicon@silicon oxide/chromium/carbon as an anode for lithium-ion batteries with excellent cyclic stability, Electrochim Acta, 164 (2015) 163- 170. https://doi.org/10.1016/j.electacta.2015.02.224
  7. M. T. McDowell, S. W. Lee, I. Ryu, H. Wu, W. D. Nix, J. W. Choi, Y. Cui, Novel size and surface oxide effects in silicon nanowires as lithium battery anodes, Nano Lett., 11 (2011) 4018-4025. https://doi.org/10.1021/nl202630n
  8. L. Liu, M. Li, L. Chu, B. Jiang, R. Lin, Facile fabrication of flexible Si-based nanocomposite films as high-rate anodes by layer-by-layer self-assembly, Appl. Surf. Sci., 476 (2019) 501-512. https://doi.org/10.1016/j.apsusc.2019.01.075
  9. X. Li, Y. Xing, J. Xu, Q. Deng, L. H. Shao, Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery, Chem. Comm., 56 (2020) 364-367. https://doi.org/10.1039/c9cc07997a
  10. N. Ding, Y. Chen, R. Li, J. Chen, C. Wang, Z. Li, S. Zhong, Pomegranate structured C@pSi/rGO composite as high performance anode materials of lithium-ion batteries, Electrochim. Acta, 367 (2021) 137491. https://doi.org/10.1016/j.electacta.2020.137491
  11. Y. Su, C. Wang, Z. Hong, W. Sun, Thermal disproportionation for the synthesis of silicon nanocrystals and their photoluminescent properties, Front Chem, 575 (2021).
  12. H. Li, H. Li, Z. Yang, L. Yang, J. Gong, Y. Liu, G. Wang, Z. Zheng, B. Zhong, Y. Song, SiOx anode: from fundamental mechanism toward industrial application, Small 17 (2021) 2102641. https://doi.org/10.1002/smll.202102641
  13. R. Teki, M. K. Datta, R. Krishnan, T. C. Parker, T. M. Lu, P. N. Kumta, N. Koratkar, Nanostructured silicon anodes for lithium ion rechargeable batteries, Small 5 (2009) 2236-2242. https://doi.org/10.1002/smll.200900382
  14. M. A. Rahman, G. Song, A. I. Bhatt, Y. C. Wong, C. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26 (2016) 647-678. https://doi.org/10.1002/adfm.201502959
  15. G. Huang, J. Han, Z.Lu, D. Wei, H. Kashani, K. Watanabe, M. Chen, Ultrastable silicon anode by three-dimensional nanoarchitecture design, ACS Nano, 14 (2020) 4374-4382. https://doi.org/10.1021/acsnano.9b09928
  16. Z. Zhang, X. Han, L. Li, P. Su, W. Huang, J. Wang, J. Xu, C. Li, S. Chen, Y. Yang, Tailoring the interfaces of silicon/carbon nanotube for high rate lithium-ion battery anodes, J. Power Sources 450 (2020) 227593. https://doi.org/10.1016/j.jpowsour.2019.227593
  17. W. J. Yu, C. Liu, P. X. Hou, L. Zhang, X. Y. Shan, F. Li, H. M. Cheng, Lithiation of silicon nanoparticles confined in carbon nanotubes, ACS Nano 9 (2015) 5063-5071. https://doi.org/10.1021/acsnano.5b00157
  18. X. Zhou, Y. Liu, Y. Ren, T. Mu, X. Yin, C. Du, H. Huo, X. Cheng, P. Zuo, G. Yin, Engineering molecular polymerization for template-free SiOx/C hollow spheres as ultrastable anodes in lithium-ion batteries, Adv. Funct. Mater., 31 (2021) 2101145. https://doi.org/10.1002/adfm.202101145
  19. L. Lee, W. T. A. Ran, J. H. Lee, S. M Hwang, Y. J. Kim, Self-adaptive anode design with graphene-coated SiOx/graphite for high-energy Li-ion batteries, Chem. Eng. J., 442 (2022) 136166. https://doi.org/10.1016/j.cej.2022.136166
  20. L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, Y. Cui, Silicon-carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity, Adv. Energy Mater., 1 (2011) 523-527. https://doi.org/10.1002/aenm.201100056
  21. Q. Xu, J. K. Sun, Z. L. Yu, Y. X. Yin, S. Xin, S. H. Yu, Y. G. Guo, SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode, Adv. Mater., 30 (2018) 1707430. https://doi.org/10.1002/adma.201707430
  22. W. Ren, Y. Wang, Z. Zhang, Q. Tan, Z. Zhong, F. Su, Carbon-coated porous silicon composites as high performance Li-ion battery anode materials: can the production process be cheaper and greener?, J. Mater. Chem. A Mater., 4 (2016) 552-560. https://doi.org/10.1039/C5TA07487H
  23. M. Xia, Z. Zhou, Y. Su, Y. Li, Y. Wu, N. Zhou, H. Zhang, X. Xiong, Scalable synthesis SiO@ C anode by fluidization thermal chemical vapor deposition in fluidized bed reactor for high-energy lithium-ion battery, Appl. Surf. Sci., 467 (2019) 298-308. https://doi.org/10.1016/j.apsusc.2018.10.156
  24. D. Wang, C. Zhou, B. Cao, Y. Xu, D. Zhang, A. Li, J. Zhou, Z. Ma, X. Chen, H. Song, One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Mater., 24 (2020) 312-318. https://doi.org/10.1016/j.ensm.2019.07.045
  25. L. Shi, C. Pang, S. Chen, M. Wang, K. Wang, Z. Tan, P. Gao, J. Ren, Y. Huang, H. Peng, Vertical graphene growth on SiO microparticles for stable lithium ion battery anodes, Nano Lett., 17 (2017) 3681-3687. https://doi.org/10.1021/acs.nanolett.7b00906
  26. K. Lim, H. Park, J. Ha, Y. T. Kim, J. Choi, Dual-carbon-confined hydrangea-like SiO cluster for high-performance and stable lithium ion batteries, J. Ind. Eng. Chem., 101 (2021) 397-404. https://doi.org/10.1016/j.jiec.2021.05.043
  27. B. H. Park, G. W. Lee, S. B. Choi, Y. T. Kim, K. B. Kim, Triethoxysilane-derived SiOx-assisted structural reinforcement of Si/carbon nanotube composite for lithium-ion battery, Nanoscale 12 (2020) 22140-22149. https://doi.org/10.1039/d0nr05178k
  28. C. Z. Zhang, J. C. Jiang, A. C. Huang, Y. Tang, L. J. Xie, J. Zhai, Z. X. Xing, A novel multifunctional additive strategy improves the cycling stability and thermal stability of SiO/C anode Li-ion batteries, Process Saf. Environ. Prot., 164 (2022) 555-565. https://doi.org/10.1016/j.psep.2022.06.046
  29. S. Z. Zeng, Y. Niu, J. Zou, X. Zeng, H. Zhu, J. Huang, L. Wang, L. B. Kong, P. Han, Green and scalable preparation of disproportionated SiO anode materials with cocoon-like buffer layer, J. Power Sources, 466 (2020) 228234. https://doi.org/10.1016/j.jpowsour.2020.228234
  30. Y. Zhang, G. Guo, C. Chen, Y. Jiao, T. Li, X. Chen, Y. Yang, D. Yang, A. Dong, An affordable manufacturing method to boost the initial Coulombic efficiency of disproportionated SiO lithium-ion battery anodes, J. Power Sources, 426 (2019) 116-123. https://doi.org/10.1016/j.jpowsour.2019.04.032
  31. W. Choi, J. Ha, Y. T. Kim, J. Choi, Highly stable iron- and carbon-based electrodes for Li-Ion batteries: negative fading and fast charging within 12 min, Chem. Sus. Chem., 15 (2022) e200201137.
  32. Y. Qiao, W. Sheng, C. He, B. Yang, H. Xu, C. Liu, Z. Rao, A facile freeze-thaw ultrasonic assisted circulation method of graphite flakes prepared by anode graphite from spent lithium-ion batteries for application in nanofluids, Sustain Energy Fuels, 5 (2021) 4882-4894. https://doi.org/10.1039/D1SE00973G
  33. D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Spatially resolved raman spectroscopy of single- and few-layer graphene, Nano Lett., 7 (2007) 238-242. https://doi.org/10.1021/nl061702a
  34. J. Zeng, X. Ji, Y. Ma, Z. Zhang, S. Wang, Z. Ren, C. Zhi, J. Yu, 3D graphene fibers grown by thermal chemical vapor deposition, Adv. Mater., 30 (2018) 1705380. https://doi.org/10.1002/adma.201705380
  35. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett., 97 (2006) 187401. https://doi.org/10.1103/physrevlett.97.187401
  36. Q. Q. Li, X. Zhang, W. P. Han, Y. Lu, W. Shi, J. B. Wu, P. H. Tan, Raman spectroscopy at the edges of multilayer graphene, Carbon 2015, 85, 221-224. https://doi.org/10.1016/j.carbon.2014.12.096
  37. D. L. Silva, J. L. E Campos, T. F. D. Fernandes, J. N. Rocha, L. R. P. Machado, E. M. Soares, D. R. Miquita, H. Miranda, C. Rabelo, O. P. Vilela Neto, Raman spectroscopy analysis of number of layers in mass-produced graphene flakes, Carbon 161 (2020) 181-189. https://doi.org/10.1016/j.carbon.2020.01.050
  38. M. Mamiya, H. Takei, M. Kikuchi, C. Uyeda, Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction, J. Cryst. Growth., 229 (2001) 457-461. https://doi.org/10.1016/S0022-0248(01)01202-7
  39. D. A. Lozhkina, E. V. Astrova, A. M. Rumyantsev, Dependence of the electrochemical parameters of composite SiO/C anodes for lithium-ion batteries on the composition and synthesis temperature, Technical Physics, 92 (2022) 339-351.
  40. L. Feng, J. Song, C. Sun, F. Liu, Y. Wang, Improving the performance of SiOx/Carbon materials for high energy density commercial lithium-ion batteries based on montmorillonite, Chem. Electro. Chem., 7 (2020) 445-451.