• Title/Summary/Keyword: surface-based method

Search Result 5,240, Processing Time 0.038 seconds

Machined Surface Inspection Based on Surface Fairing on the Machine Tool (곡면평활화를 고려한 공작기계상에서의 가공곡면 검사)

  • Lee, Se-Bok;Kim, Gyeong-Don;Jeong, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology (CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경)

  • Song, Min-Keun;Oh, Ki-Seok;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.

A Region Based Approach to Surface Segmentation using LIDAR Data and Images

  • Moon, Ji-Young;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.575-583
    • /
    • 2007
  • Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches. Many previous segmentation methods have been developed to extract planar patches from LIDAR data for building extraction. However, most of them were not fully satisfactory for more general applications in terms of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to perform surface segmentation by combining not only LIDAR data but also images. A region-based method is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based on both the coordinates of the points and the corresponding intensity values computed from the images. This method has been applied to urban data and the segmentation results are compared with the reference data acquired by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable intermediate process toward automatic extraction of 3D model of the real world.

A Study on the Optimal Condition Determination of Laser Scattering Using the Design of Experiment (실험계획법을 이용한 레이저 산란의 최적 조건 결정에 대한 연구)

  • Han, Jae-Chul;Kim, Gyung-Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.58-64
    • /
    • 2009
  • In this paper, an inspection mechanism based on laser scattering has been developed for the surface evaluation of infrared cut-off filters, and optimum conditions of laser scattering are determined using the design of experiment. First of all, attributes and influence factors of laser scattering are investigated and then a laser scattering inspection mechanism is newly designed based on analyses of laser scattering parameters. Also, Taguchi method, one of experimental designs, is used for the optimum condition selection of laser scattering parameters and the optimum condition is determined in order to maximize the detection capability of surface defects. Experiments show that the proposed method is useful in a consistent and effective defect detection and can be applied to surface evaluation processes in manufacturing.

Study of Acoustic Holography using Equivalent Source Method with Continuation of Acoustic Near-field (근접음장 연속법과 등가 음원법을 이용한 음향홀로그래피 연구)

  • Kim, Sung-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.643-648
    • /
    • 2011
  • This paper deals with the ESM(equivalent source method) with the continuation of acoustic near-field for NAH(near-field acoustic holography) to overcome the finite measurement aperture effect and reconstruct the normal velocity on an arbitrarily shaped structure surface. The continuation method is an extension of the measured sound field into a region outside and is based on the Green's function relating acoustic quantities on the two conformal surfaces. This algorithm is not limited to planar surfaces and can be applied to arbitrarily shaped surfaces. The ESM is an alternative approach of BEM-based NAH for the reconstruction on a general structure. In ESM the acoustic field is represented by a set of point sources located over a surface that is close to the structure surface. The simulation results of this study shows that the reconstruction error of particle velocity on the source surface is 11% and 16% for planar and cylindrical sources separately.

  • PDF

Fabrication method of PDMS microlensesusing water-based molding method (표면개질에 의한 물방울 접촉각 변화를 이용하여 제작된 PDMS 마이크로 렌즈)

  • Kim, Hong-Ki;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.375-379
    • /
    • 2008
  • This paper reports a new fabrication method of polydimethylsiloxane (PDMS) microlenses with various curvatures by using a water-based mold. The hydrophobic surface of Polypropylene (PP) substrate was modified by corona discharge using tesla coil to have hydrophilic surface. Then hydrophilic surface of PP substrate takes hydrophobic recovery to have various contact angles from less than $25^{\circ}$ to about $84^{\circ}$. By using the water droplets with various contact angles as replica molds for PDMS process, we could obtain PDMS microlenses with various curvatures.

Quantitative Analysis of a Steel Billet Surface Flaw Detection System by Means of a Finite Element Method

  • Bae, Sungwoo;Lee, Hongyeob
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1729-1734
    • /
    • 2016
  • The surface inspection of a steel billet is a common practice in the steel manufacturing process prior to hot rolling to produce steel wire for tire cord. This billet surface inspection is an important process because flaws on the surface may cause major failures during the product manufacturing phase. This paper presents a computer simulation based on a finite element method for a magnetic flaw detector with a function of the current intensity, the number of coil turns, and the billet proceeding speed during the production phase based on the typical condition of conventional apparatus. Based on the simulation result, the magnitude of the electromagnetic field on the surface diminished with distance from the electromagnet. In addition, the increased current intensity and the increased number of coil turns actually induced a stronger electromagnetic field on the billet surface. On the other hand, the proceeding speed of a billet in its production line had no significant effects. The result in this study may assist to reduce trial and error and to minimize the opportunity costs during the optimization process by applying the findings of this study into the operation condition in the steel billet production line.

S-CODE: A Subdivision Based Coding System for CAD Models

  • Takarada, Yosuke;Takeuchi, Shingo;Kawano, Isao;Hotta, Jun;Suzuki, Hiromasa
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.97-109
    • /
    • 2003
  • A large scale polygon models are often used to approximately represent 3D CAD models in Digital Engineering environment such as DMU (Digital Mockups) and network based collaborative design. However, they are not suitable for distribution on the network and for interactive rendering. We introduce a new coding system based on subdivision schemes called S-CODE system. In this system, it is possible to highly compress the model with sufficient accuracy and to view the model efficiently in a level of detail (LOD) fashion. The method is based on subdivision surface fitting by which a subdivision surface and curves which approximate a face of a CAD model are generated. We also apply a subdivision method to analytic surfaces such as conical and cylindrical surfaces. A prototype system is developed and used for evaluation with reasonably complicated data. The results show that the method is useful as a CAD data coding system.

Generating Cartesian Tool Paths for Machining Sculptured Surfaces from 3D Measurement Data (3차원 측정자료부터 자유곡면의 가공을 위한 공구경로생성)

  • Ko, Byung-Chul;Kim, Kwang-Soo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.19 no.3
    • /
    • pp.123-137
    • /
    • 1993
  • In this paper, an integrated approach is proposed to generate gouging-free Cartesian tool paths for machining sculptured surfaces from 3D measurement data. The integrated CAD/CAM system consists of two modules : offset surface module an Carteian tool path module. The offset surface module generates an offset surface of an object from its 3D measurement data, using an offsetting method and a surface fitting method. The offsetting is based on the idea that the envelope of an inversed tool generates an offset surface without self-intersection as the center of the inversed tool moves along on the surface of an object. The surface-fitting is the process of constructing a compact representation to model the surface of an object based on a fairly large number of data points. The resulting offset surtace is a composite Bezier surface without self-intersection. When an appropriate tool-approach direction is selected, the tool path module generates the Cartesian tool paths while the deviation of the tool paths from the surface stays within the user-specified tolerance. The tool path module is a two-step process. The first step adaptively subdivides the offset surface into subpatches until the thickness of each subpatch is small enough to satisfy the user-defined tolerance. The second step generates the Cartesian tool paths by calculating the intersection of the slicing planes and the adaptively subdivided subpatches. This tool path generation approach generates the gouging-free Cartesian CL tool paths, and optimizes the cutter movements by minimizing the number of interpolated points.

  • PDF

Free-surface Boundary Condition in Time-domain Elastic Wave Modeling Using Displacement-based Finite-difference Method (시간영역 변위근사 유한차분법의 자유면 경계조건)

  • Min Dong-Joo;Yoo Hai Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.77-86
    • /
    • 2003
  • We designed a new time-domain, finite-difference, elastic wave modeling technique, based on a displacement formulation. which yields nearly correct solutions to Lamb's problem. Unlike the conventional, displacement-based, finite-difference method using a node-based grid set (where both displacements and material properties such as density and Lame constants are assigned to nodal points), in our new finite-difference method, we use a cell-based grid set (where displacements are still defined at nodal points but material properties within cells). In the case of using the cell-based grid set, stress-free conditions at the free surface are naturally described by the changes in the material properties without any additional free-surface boundary condition. Through numerical tests, we confirmed that the new second-order finite differences formulated in the cell-based grid let generate numerical solutions compatible with analytic solutions unlike the old second-order finite-differences formulated in the node-based grid set.