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A Region Based Approach to Surface Segmentation using
LIDAR Data and Images

Jiyoung Moon" - Impyeong Lee?

Abstract

Surface segmentation aims to represent the terrain as a set of bounded and analytically defined surface patches.
Many previous segmentation methods have been developed to extract planar patches from LIDAR data for
building extraction. However, most of them were not fully satisfactory for more general applications in terms
of the degree of automation and the quality of the segmentation results. This is mainly caused from the limited
information derived from LIDAR data. The purpose of this study is thus to develop an automatic method to
perform surface segmentation by combining not only LIDAR data but also images. A region-based method
is proposed to generate a set of planar patches by grouping LIDAR points. The grouping criteria are based
on both the coordinates of the points and the corresponding intensity values computed from the images. This
method has been applied to urban data and the segmentation results are compared with the reference data acquired
by manual segmentation. 76% of the test area is correctly segmented. Under-segmentation is rarely founded
but over-segmentation still exists. If the over-segmentation is mitigated by merging adjacent patches with similar
properties as a post-process, the proposed segmentation method can be effectively utilized for a reliable

intermediate process toward automatic extraction of 3D model of the real world.

Keywords :

1. Introduction

Surface segmentation is a process to represent the
terrain as a set of bounded and analytically defined sur-
face patches by extracting these patches from sensory
data. It has been recognized as an important intermediate
process toward the automatic generation of abstract
descriptions of the real world from sensory data (Lee,
2002; Lee and Schenk 2001b; Lee and Schenk 2002;
Lee, 2006a). Recently, with the advance of sensor tech-
nology, LIDAR systems that can generate a number of
points densely sampled from the surface of the earth have
emerged as a promising means to capture 3D information
efficiently and accurately.

Surface segmentation from such LIDAR data has been
attempted by many researchers. Most of them performed

segmentation as an intermediate process for the extrac-

LIDAR, Image, Segmentation, Data fusion, Region growing

tion of artificial objects such as buildings or roads. For
building reconstruction, Brenner (2003) proposed a
RANSAC based estimation method to extract planar
patches from a DSM generated from LIDAR data.
Rottensteiner (2003) considered the normal vector at each
grid post on the DSM to extract planar patches. Lodha
et. al. (2005) presented a semi-automatic method to seg-
ment planar patches using K-mean algorithm for roof
reconstruction. For more general purpéses, Lee and Schenk
(2001a) and Lee (2006a) have proposed an automatic
method to generate a set of planar patches from LIDAR
points by grouping them using a region-growing approach.
Lee (2006b) has applied this approach to extracting ground
points and Park et. al. (2006) and Kim (2006) have used
for extracting 3D models of buildings and roads, respec-
tively.

The automatic segmentation results from LIDAR data
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using the previously proposed algorithms are not fully
satisfied due to various reasons. For examples, many
algorithms suffered from the under-segmentation problems
that tend to undesirably merge more than two separate
patches in reality into a patch. One of the most important
reasons to produce the unsatisfied results is that most
methods consider only the coordinates of the LIDAR
points. Some LIDAR systems also provide the intensity
value of each point proportional to the energy of reflected
pulse but the quality is not sufficient for segmentation.
In other hand, aerial images have many complementary
characteristics to the LIDAR data (Schenk and Csatho,
2002). For example, LIDAR data have only the geo-
metric information such as the coordinates of the sampled
points but the images also include radiometric infor-
mation such as the intensity values for each band. In
this study, we thus attempted to develop an automatic
segmentation approach using both LIDAR data and aerial
images. Since both data are complementary to each other,
more appropriate segmentation results are expected.

In general, segmentation methods are classified into
edge-based or region-based approach. An edge based
approach extracts the discontinuous edges like road
boundaries or building outlines and attempts to link the
edges into a closing region. However, this linking pro-
cess may often fail since some of the edges encom-
passing a region are often missing or quite scattered. A
region based approach generates a region by starting
from a small homogeneous region called seed region and
iteratively adding a new sensory element adjacent to the
currently growing region. The sensory element can be
a point of LIDAR data or a pixel of an image. During
the growing process, the new element is examined using
an inclusion test to determine whether it is enough con-
sistent with the growing region. For more successful
results from the region based approach, the approach is
required to employ more sophisticated strategy for seed
region selection and inclusion test.

The proposed method of this study is classified as a
region-based method. Seed patches are generated by
clustering a small number of points adjacent to each
other and then selected in the order of their homogeneity
in terms of geometry and intensity. Starting from a selected
seed patch, it grows a large patch by recursively adding

a new point adjacent to and consistent with the patch.
The consistency is examined using a novel statistical test
to determine statistically whether it is significantly evident
that the new point has the same properties as the patch
in terms of geometry and intensity.

After this introduction, this paper describes in detail
the methodology focusing on seed patch selection and
iterative growing process. The experiment results from
its application to urban data are then presented with some

quantitative analysis, followed by some concluding remarks.

2. Methodology

The proposed segmentation approach consists of two
stages. In the first stage, we generate a number of seed
patch candidates, some of which are selected for patch
growing in the second stage. In addition, it is assumed
that the LIDAR data have been preprocessed using the
outlier elimination (Moon et. al., 2005) and calibration
techniques and the images have been geometrically
registered with the preprocessed LIDAR data (Lee et.
al., 2005). After this geometric registration, the exterior
orientation parameters of the images are then determined
with respect to the same reference coordinate system as
the LIDAR data. With these exterior orientation para-
meters, each LIDAR point can be projected to the image
based on the collinearity equation. The intensity values
interpolated at this projected location on the image can
be assigned to the corresponding intensity to the LIDAR

point.

2.1 Seed patch generation

Seed patches serve as the initial patches from which
surface patches start to grow in the next stage. In this
study, we generate a set of seed patches by clustering
a certain number of points close to each point of LIDAR
data. The properties of each seed patch indicating its
geometry and intensity are then computed. In terms of
the geometry, the plane parameters of each patch are
estimated by fitting a planar model to a set of the points
clustered to the patch. If a seed patch includes k points,
the observation equations to estimate the plane parameters
(a, b, c¢) are represented as
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where (x;, y;, z;) are the coordinates of i-th point of the
patch, e; is the combined error associated with the coor-
dinates, and I; is the £ by k identity matrix. In terms of
intensity, the mean values (R, G, B) of the intensity of
image pixels corresponding to the points of the patch are

estimated using the observation equations expressed as
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where (R;, G;, B;) are the intensity values corresponding
to the i-th point when the image has three bands.

By applying the least squares estimation method to the
two sets of the observation equations in Eq. (1) and (3),
the estimates for the parameters and the variance com-
ponents can be derived as
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The estimate £, derived in Eq. (6) is actually identical
to the average intensity values corresponding to all the
points of the patch. The square root of the variance
component estimate derived in Eq. (7) is roughly pro-
portional to the average distance between each point and
the plane adjusted to the set of points of the patch, actually

indicating the roughness of the patch. The square root

of the variance component estimate derived in Eq. (8)
is roughly proportional to the standard deviation of the
intensity values corresponding to the points of the patch.
Hence, both variance component estimates indicate the
homogeneity of the patch in terms of the geometry and
intensity, respectively.

2.2 lterative growing

This process generates a set of surface patches by
growing from some of the seed patches generated in the
previous stages. It starts with the selection of a seed
patch among a number of seed patch candidates generated
in the previous stage. Among these candidates, a seed
patch of higher homogeneity in terms of geometry and
intensity has higher priority to be selected. The geometric
homogeneity is quantified with the plane fitting errors,
so called roughness and the intensity homogeneity is
done with the variation of the intensity values assigned
to each point of a seed patch. These two kinds of homo-
geneity measures have been derived in Eq. (7) and (8),
respectively. If the most homogeneous one has been
already segmented as a part of previously growing patch,
we will discard it and use the next most homogeneous
one. This selection process is similar to those process
employed by Lee (2006) to extract planar patches from
only LIDAR data except the consideration of the inten-
sity homogeneity.

From the seed patch of the highest priority, we generate
a surface patch using the iterative growing process. This
process iteratively adds a point into the currently growing
patch if the point is adjacent to and consistent with the
patch. The overview of this process is summarized in
Fig. 1.

The most important step of this iterative growing
process is the inclusion test to determine whether a new
point is included to a patch or not by checking its
consistency with the patch in terms of geometry and
intensity. In terms of geometry, we statistically determine
if the point can be thought be on the plane of the patch.
At the same time, in terms of intensity, we statistically
determine if the image value assigned to the point can
be thought be the same of the mean intensity values
assigned to the points of the patch.

This test is configured with a statistical test in which
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Fig. 1. lterative growing process

L Update the patch properties

a hypothesis is established and examined with F-test. In
this test, the null hypothesis (Hy) is “the new point has
the same properties as the currently growing patch” and
the alternative hypothesis (H)) is “the new point does not
have the same properties as the currently growing patch”.
These hypotheses are mathematically represented as

Hn Vo = Anuf(n) Vs. H1 Va * An+]§(ﬂ) ’ (9)

where £, is the estimate of the parameters of the current
patch that have already included » number of points. This
estimate is based on the observation equations incor-
porating Eq. (1) and Eq. (3) expressed as
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In Eq. (9), ys+1 and A, is the additional observations
and design matrix constructed by the coordinates and
intensity values of the new point (the n+1 th point) ex-

pressed as
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The test statistic 7 for the statistical test is then ex-
pressed as
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where Q{¢ () the cofactor matrix of the current estimate

of the parameters, 5§y(")the current estimate of the variance
component, and 74 is the 4x4 identity matrix. This test
statistic follows F-distribution with the degrees of free-
dom (4, 4n —6) under H, by assuming that all the errors
of the coordinates of the points and values of pixels are
independent and identically normally distributed. If this
test statistic is smaller than the critical value F, (4, 4n—
6) of the significance level g, the null hypothesis is
accepted. The tested point is then included to the patch
and the estimates are updated using the sequential least

square estimation summarized as
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3. Experimental Results

3.1 Test Data

The proposed method has been applied to five different
data sets. Each data set includes the LIDAR data and
the aerial images, which were simultaneously acquired
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by a LIDAR system and a medium-format digital camera
mounted to the same airplane. Their main properties are
summarized in Table 1.

These data sets cover an urban area in Masan, Korea.
This area includes mainly large buildings of various
shapes on the almost flat terrain as shown in Fig. 2. Set
A mainly includes mainly planar roof surfaces of various
slopes which are very adjacent each other. Set B includes
buildings looking similar to those in Set A but their roof
surfaces are quite near to each other, retaining slight
height differences. Hence, the successful segmentation
of these individual surfaces is thought to be significantly
difficult. This is the reason why we selected this set to
evaluate the proposed method. Set C includes buildings
of common shapes with different sizes. Each of them
mainly has a large flat roof on which small objects
locate.

3.2 Evaluation Procedures

To validate the proposed segmentation method, we

Table 1. Properties of Data Sets

LIDAR Images
D No. Arga PoinF denszity Gr9und
points [m”] [points/m”] | resolution [cm)]
A 16561 7356.41 2.25
B 10207 5776.70 1.77 20
C 19862 9176.16 2.16

Fig. 2. Data coverage over the aerial image

need to evaluate quantitatively the segmentation results
from its application to the test data. This quantitative
evaluation is based on the comparison of the segmen-
tation results with a reference model assumed to be true.
Hence, in this study, we created this reference model
by manually digitizing an ortho-rectified aerial image
over the test area, as shown in Fig. 3. This manual digiti-
zation was applied to the large surfaces mainly corre-
sponding to the roofs of large buildings, which can be
distinctly recognizable from the visual inspection.
During the evaluation process, we compare a set of
automatically segmented patches with its corresponding
reference sets of manually segmented patches. During
this comparison processes, we try to find the correspon-
dence between the patches of the automatically seg-
mented set and those of the reference set by computing
the overlapping area of each patch from a set with each
patch from the other set. Based on the correspondence,
we assign five different classes indicating the correctness
of segmentation, which are “correct”, “over-segmented”,
“under-segmented”, “noises”, and “not segmented”. Each

of these classes is explained in more detail as follows:

L ped

(b) (©)

Fig. 3. A Manually Segmented Reference Model
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(A) Correct (C): if a patch from the automatically
segmented set is almost identical to its corresponding
patch from the reference set, “correct” is assigned. In
this case, the shapes of two patches are similar and their
overlapping area is more than 80% of the area of each
patch.

(B) Over-segmentation (OS): if more than two patches
from the automatically segmented set correspond to only
a patch from the reference set, “over-segmentation” is
assigned. In this case, a surface patch in reality is divided
into more than two patches from the segmentation pro-
cess. This is usnally caused when the initial patch for
the region growing is not enough large to retain the
average properties of a patch in reality or the threshold
for the region growing is too small. In general, if we
set a lower value to the significance level in the statistical
test to determine if a point is consistent with a currently
growing patch, we can decrease the occurrence of type
I error of the statistical test but face the over-seg-
mentation problem.

(C) Under-segmentation (US): if a patch from the
automatically segmented set corresponds to more than
two patches from the reference set, “under-segmentation”
is assigned. In this case, more than two patches in reality
are merged into a patch from the segmentation process.
This is usuvally caused when the initial patch for the
region growing happen to overlap more than two patches

Fig. 4. An Example of Under-segmentation

in reality or the threshold for the region growing is too
large. In general, if we set a higher value to the signi-
ficance level in the statistical test, we can decrease the
occurrence of type II error of the statistical test but face
the under-segmentation problem. In addition, if the distance
between two different patches of similar properties is not
enough large in comparison with the average distance
between points, they may be segmented into a single
patch rather than two separate patches. An example of
this kind is shown in Fig. 4.

(D) Noise (N): if a patch from the automatically seg-
mented set corresponds to none of patches from the
reference set, “noise” is assigned. In this case, the auto-
matically segmented patch is decided not to exist in
reality. This can be usually caused if erroneous points
(like outliers) were not eliminated during the preproces-
sing process and remain aggregated in a local area or
a patch existing in reality is omitted during the manual
segmentation process.

(E) Not segmented (NS): if a patch from the reference
set corresponds to none of patches from the automati-
cally segmented set, “not segmented” is assigned. In this
case, the automatic segmentation process fails to extract

a patch existing in reality.

3.3 Segmentation Results and Evaluation

The proposed segmentation method was applied to
three data sets described before. During this experiment,
the significance level in the statistical test for region
growing is set to 0.5%. The segmentation results from
Set A are shown in Fig. 5, where (a) visualizes the points
grouped into each patch and (b) does the boundary of
each patch. The boundary is computed using the alpha-
shape algorithm (Edelsbrunner et. al., 1983). We had
attempted to assign different colors to different patches
but we used only six different colors since we cannot
visually recognize more than six colors. Some different
patches may have the same colors, hence. In the similar
way, the segmentation results from Set B and Set B are
shown in Fig. 6 and 7, respectively.

All the segmentation results look visually reasonable.
All the main planar surfaces locating on the large buil-
dings are successfully segmented. The results were further

quantitatively evaluated according to the criteria descri-
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Fig. 5. Segmentation Results of Set A
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Fig. 6. Segmentation Results of Set B
bed in the previous section. This evaluation results are existing in reality are over-segmented and two patches
summarized in Table 2. In overall, about 76% area of are under-segmented. Hence, it can be seen that the
total area of the entire sets are correctly segmented into proposed segmentation method tends to divide a patch
52 patches. Fifteen patches (about 11% of total area) in reality into more than two patches during the seg-
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Fig. 7. Segmentation Results of Set C
Table 2. Quantitative Evaluation Results
C oS UsS N NS Total
No. patches 23 3 1 10 0 37
Set A Area [mz] 6106.03 766.63 507.4 1036.15 0 8416.21
Area Ratio [%)] 72.6 9.1 6.0 12.3 0 100
No. patches 14 6 1 4 0 25
Set B Area [mz] 2633.21 540.7 233.95 416.65 0 3824.51
Area Ratio [%)] 68.9 14.1 6.1 10.9 0 100
No. patches 15 6 0 4 0 25
Set C Area [mz] 6103.08 798.4 0 476 0 7377.48
Area Ratio [%)] 82.7 10.8 0 6.5 0 100
No. patches 52 15 2 18 0 87
Total Area [mz] 14842.32 2105.73 741.35 1928.8 0 19618.2
Area Ratio [%)] 75.7 10.7 3.8 9.8 0 100
mentation process in some cases. This over-segmentation 4. Conclusion

problem can be mitigated by incorporating a post-processing
process to merge recursively two different adjacent patches
with similar properties into a patch. In other hand, many
noisy small patches are generated from the proposed
segmentation process. Some of these are the patches
actually existing in reality that we could not clearly re-
cognize during the digitization process for the generation
of the reference set. The others can be eliminated by
checking if their properties are reasonable in the real
world in terms of the size, roughness, and shape.

In this study, we proposed a region-based segmentation
approach to generate a set of patches representing the
terrain by grouping the LIDAR points based on the coor-
dinates of the points and the corresponding image in-
tensity values. This approach mainly consists of seed patch
generation and iterative patch growing. A statistical test
to examine the consistency between a new point and a
currently growing patch is presented with mathematical

derivation.
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From the experimental results from its application to
urban data, the proposed method produces correct seg-
mentation in 76% of the test area comparing to the
reference data acquired by manual segmentation. About
11% area is over-segmented, indicating that a post-
processing process to merge adjacent patches with similar
properties is required. In about 10% area, the noisy
patches are generated. This is mainly because the manual
segmentation can often ignores small patches. Relatively,
the small area (4%} is under-segmented. This low ratio
can be achieved since both LIDAR data and image are
used. Under-segmentation has been reported as a
significant problem particularly in a dense urban area
if only LIDAR data are used.

If the over-segmentation problem is mitigated by in-
corporating a post process to merge adjacent patches with
similar properties, we can effectively utilize the proposed
segmentation method as a reliable intermediate process
toward automatic extraction of 3D model of the real
world.
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