• 제목/요약/키워드: surface-based method

검색결과 5,207건 처리시간 0.031초

비축대칭 H-형 및 U-형상의 압출금형 곡면의 자동생성 (Automatic Surface Generation for Extrusion Die of Non-symmetric H-and U-shaped sections)

  • 유동진;임종훈;양동열
    • 소성∙가공
    • /
    • 제12권6호
    • /
    • pp.572-581
    • /
    • 2003
  • In this paper, an automatic surface construction method based on B-spline surface and scalar field theory is proposed to generate the extrusion die surface of non-symmetric H-and U-shaped sections. The isothermal lines and stream lines designed in the scalar field are introduced to find the control points which are used in constructing B-spline surfaces. Intersected points between the isothermal lines and stream lines are used to construct B-spline surfaces. The inlet and outlet profiles are precisely described with B-spline curves by using the centripetal method for uniform parameterization. The extrusion die surface is generated by using the cubic curve interpolation in the u-and v-directions. A quantitative measure for the control of surface is suggested by introducing the tangential vectors at the inlet and outlet sections. To verify the validity of the proposed method, automatic surface generation is carried out for extrusion die of non-symmetric H-and U-shaped sections.

고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발 (Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface)

  • 장유진;이주섭
    • 제어로봇시스템학회논문지
    • /
    • 제21권5호
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.

CSF 모델을 이용한 자유표면 유동 해석 (A method for incompressible free surface flow including surface tension using CSF model)

  • 홍인철;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.15-18
    • /
    • 2004
  • A numerical method for simulating two-phase flows including surface force is presented. The method is based on fractional step method of finite volume formulation and the interface is tracked with PLIC VOF method. In the CSF model, as color function, f, representing the location of interface varies steeply in the interface region, we need to use smoothed function f to get accurate unit normal and the curvature. Peskin kernel is used to get smoothed function f. A spherical drop in static equilibrium and three-dimensional merging of gas bubble are tested, resulting in the validation of this method

  • PDF

PDMS와 고분자 전해질 표면을 이용한 간편한 세포 패터닝 방법 (Facile Cell Patterning Based on Selectively Patterned Polydimethylsiloxane (PDMS) and Polyelectrolyte Surface)

  • 정헌호;송환문;황예진;황택성;이창수
    • KSBB Journal
    • /
    • 제24권6호
    • /
    • pp.515-520
    • /
    • 2009
  • This study presented facile method of cell patterning using fabricated PDMS patterns on polyelectrolyte coated surface. This basic principle is the fabrication of functional surface presenting two orthogonal surfaces such as cell adhesive and repellent properties. Cell adhesive surface was firstly fabricated with simple coating of polyelectrolyte multilayer. And then, the desired patterns of PDMS for the prevention of nonspecific binding of cells were transferred onto the previously formed thin film of polyelectrolyte multilayer. Thus, we could prepare novel functional surface simultaneously containing PDMS and polyelectrolyte region. As expected, the PDMS regions showed effective prevention of nonspecific binding of cell and the other region, exposed polyelectrolyte area, provided cell adhesive environment. The height of formed PDMS structure was about 100 nm. Based on this method, cell patterning can be successfully obtained with various pattern shapes and sizes. Therefore, we expect that this simple method will be useful platform technology for the development of cell chip, cell based assay system, and biochip.

인체전류를 기반으로 하는 감전의 위험성 평가방법 (A Method for Evaluating Electric Shock Hazards Based on Human Body Current)

  • 이복희;유양우;최종혁
    • 조명전기설비학회논문지
    • /
    • 제25권6호
    • /
    • pp.108-114
    • /
    • 2011
  • In order to mitigate the possible hazards from electric shock due to the touch and step voltages, the high resistivity material such as gravel is often spread on the earth's surface in substations. When the grounding electrode is installed in two-layer soil structures, the surface layer soil resistivity is different with the resistivity of the soil contacted with the grounding electrodes. The design of large-sized grounding systems is fundamentally based on assuring safety from dangerous voltages within a grounding grid area. The performance of the grounding system is evaluated by tolerable touch and step voltages. Since the floor surface conditions near equipment to be grounded are changed after a grounding system has been constructed, it may be difficult to determine the tolerable touch and step voltage criteria. In this paper, to propose an accurate and convenient method for evaluating the protective performance of grounding systems, the propriety of the method for evaluating the current flowing through the human body around on a counterpoise buried in two-layer soils is presented. As a result, it is reasonable that the grounding system performance would be evaluated by measuring and analyzing the current flowing through the human body based on dangerous voltages such as the touch or step voltages and the contact resistance between the ground surface and feet.

직사각형 검사영역의 상관도 분석을 통한 수면위치 탐색 방법 (A Novel Water Surface Detection Method Based on Correlation Analysis for Rectangular Control Area)

  • 이찬주;서명배;김동구;권성일
    • 한국수자원학회논문집
    • /
    • 제45권12호
    • /
    • pp.1227-1241
    • /
    • 2012
  • 본 연구에서는 목자판과 수면이 포함되어 있는 시차를 가진 두 영상에 대해 직사각형 검사영역을 설정하고 그 상관계수를 분석하여 수면을 판단하는 새로운 수면인식 기법을 제안하였다. 상관계수의 수직적인 값들로부터 임계치, 첨두값, 기울기, 분산비 등 4가지 방법을 이용하여 수면의 위치를 판정하였다. 흔들림 등으로 인해 두 영상의 위치가 불일치하여 생기는 문제를 제거하기 위해 추가로 영상의 흔들림을 보정하는 알고리즘과 통계적 필터링 기법을 적용하였다. 저수시에 촬영한 28개 지점의 영상에 개발한 수면 인식 방법을 적용하였다. 이 방법으로 계산한 수면은 목측 수면과의 평균상대오차가 3.4~5.7 cm 정도로 나타났다. 수면의 요동이 있을 경우, 이 방법은 기존 방법을 보완하여 영상수위계의 수위 측정성능을 높이는데 활용될 수 있을 것이다.

반응표면법을 이용한 차체 부재의 충돌성능 향상을 위한 설계 최적화 (Design Optimization of Auto-body Members for Crashworthiness Enhancement with the Response Surface Method)

  • 나승렬;송정한;허훈;김현섭
    • 한국자동차공학회논문집
    • /
    • 제13권4호
    • /
    • pp.81-89
    • /
    • 2005
  • The response surface method is the statistical method which can be applied to the non-sensitivity based optimization. The response surface which is constructed by the least square method contains only the polynomial terms so that the global maximum and minimum points are easily obtained. In this paper, this response surface method is utilized to optimize the crashworthiness of auto-body members. As the first step, the thickness of a simple circular tube is optimized to confirm the application of the response surface method to the crashworthiness. Optimization of the thickness on the front side member is, then, performed with the constructed response surface of the absorbed energy and deformation. Optimization results demonstrate that the absorbed energy and the deformation pattern of the front side member is improved in the viewpoint of enhancement of the crashworthiness.

비초점 정밀 계측 방식에 의한 새로운 광학 프로브를 이용한 반도체 웨이퍼의 삼차원 미소형상 측정 기술 (A New Method of Noncontact Measurement for 3D Microtopography in Semiconductor Wafer Implementing a New Optical Probe based on the Precision Defocus Measurement)

  • 박희재;안우정
    • 한국정밀공학회지
    • /
    • 제17권1호
    • /
    • pp.129-137
    • /
    • 2000
  • In this paper, a new method of noncontact measurement has been developed for a 3 dimensional topography in semiconductor wafer, implementing a new optical probe based on the precision defocus measurement. The developed technique consists of the new optical probe, precision stages, and the measurement/control system. The basic principle of the technique is to use the reflected slit beam from the specimen surface, and to measure the deviation of the specimen surface. The defocusing distance can be measured by the reflected slit beam, where the defocused image is measured by the proposed optical probe, giving very high resolution. The distance measuring formula has been proposed for the developed probe, using the laws of geometric optics. The precision calibration technique has been applied, giving about 10 nanometer resolution and 72 nanometer of four sigma uncertainty. In order to quantitize the micro pattern in the specimen surface, some efficient analysis algorithms have been developed to analyse the 3D topography pattern and some parameters of the surface. The developed system has been successfully applied to measure the wafer surface, demonstrating the line scanning feature and excellent 3 dimensional measurement capability.

  • PDF

곡면평활화를 고려한 공작기계상에서의 가공곡면 검사 (Machined Surface Inspection Based on Surface Fairing on the Machine Tool)

  • 이세복;김경돈;정성종
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.937-945
    • /
    • 2000
  • The assessment of machined surface is difficult because the freeform surface must be evaluated by surface fairness as well as dimensional accuracy. In this study, the machined freeform surface is modeled by interpolating the data measured on the machine tool into the mathematical continuous surface, and then the surface model is improved with the parameterization to minimize surface fairness. The accuracy reliability of the measured data is confirmed through compensation of volumetric errors of the machine tool and of probing errors. Non-uniform B-spline surface interpolation method is adopted to guarantee the continuity of surface model. Surface fairness is evaluated with the consideration of normal curvature on the interpolated surface. The validity and usefulness of the proposed method is examined through computer simulation and experiment on the machine tool.

CAE를 이용한 파워트레인의 방사소음 저감을 위한 구조변경 (Structural Modification for the Reduction of Radiation Noise of a Powertrain Based on CAE Technology)

  • 송민근;오기석;이상권
    • 한국소음진동공학회논문집
    • /
    • 제18권4호
    • /
    • pp.439-447
    • /
    • 2008
  • One of the key elements in efforts to minimize noise radiation from a powertrain is the knowledge of the main radiating component and the relation between the surface vibration of a powertrain and the sound pressure. In this research, the powertrain model is developed based on FEM(finite element method). This model is applied to the prediction of the vibration of a powertrain by using ADAMS and the radiation noise by using BEM(boundary element method). According to this numerical analysis, the surface vibration of a powertrain is investigated as a source of radiated noise. This surface vibration is caused by the 1st order natural vibration of the cylinder block and its mode shape is the torsion mode. Therefore, this mode shape is modified to reduce the surface vibration of the powertrain. The radiation noise of the modified powertrain is also reduced to $5{\sim}12\;dB$. This modification is very successful for the noise reduction based on the CAE technology.