• Title/Summary/Keyword: surface-alloying treatment

Search Result 56, Processing Time 0.208 seconds

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk;Kim, Tae-Jun;Kim, Jun-Hyuk;Zeid, E. F. Abo;Kim, Yong-Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.31-38
    • /
    • 2010
  • In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

Type Classification and Material Properties by the Composition of Components in Gold Earrings Excavated from the Yeongnam Region (영남지역 출토 금제 귀걸이의 성분 조성에 따른 유형 분류와 금속 재료 특성)

  • Jeon, Ikhwan;Kang, Jungmoo;Lee, Jaesung
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.4-21
    • /
    • 2019
  • In this paper, 23 Silla gold earrings from the sixth and seventhand centuries, excavated from the Yeongnam region, were analyzed. Based on the silver content of the gold plate, they were classified into three types. The classifications included type I(20-50wt%), type II(10-20wt%) and type III (less than 10wt%). In the analysis process, the composition and morphological differences were identified on the surface of the gold plate. In the case of type I and II earrings, it was observed that the fine holes were concentrated in a relatively higher part of the gold content. The causes of the difference in the surface composition of the gold plate were divided into four categories: 1) surface treatment, 2) thermal diffusivity in the manufacturing process, 3) differences in composition of alluvial gold, and 4) the refining method of gold. It is possible that depletion gilding was attempted to increase the gold content while intentionally removing the other metals from the surface of the gold alloy in the portion where the gold deposit is relatively concentrated on the surface of the gold plating. The highest copper content was detected in the earring with the highest gold content of the analyzed earrings, and it was assumed that thermal diffusion had occurred between the gold plate and the metal rod during the manufacturing process rather than intentional addition. Copper was detected only in the thin ring earring type, and copper was not detected in the thick ring earring type or pendant type. It also proves that this earring has a high degree of tightness at higher temperatures, as there was an invisible edge finish on other earrings and horizontal wrinkles on the gold plate surface. In terms of the material of the gold plate, we examined whether the silver content of the gold plate was natural gold or added by alloy through analyzing the alluvial gold collected in the region. As a result of the analysis, it was found that on average about 13wt% of silver is included. This suggests that type II is natural gold, type III is refined gold, and type I seems to have been alloyed with natural gold. Here, we investigated the refining method introduced in the ancient literature, both at home and abroad, about the possibility of alloying silver after the refining process of type III earrings and then making pure gold. It was found that from ancient refining methods, silver which had been present in the natural gold was removed by reacting and combining with silver chloride or silver sulfide, and long-term efforts and techniques were required to obtain pure gold through this method. Therefore, it was concluded that the possibility of adding a small amount of silver in order to increase strength after making pure gold through a refining process is low.

Study on the Superplasticity in Al-Li Alloy Systems (AI-Li계 합금의 초소성에 관한 연구)

  • Jin, Y.C.;Kook, J.S.;Kim, Y.S.;Hong, E.S.;Lee, M.S.;Lee, M.H.;Yoo, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • The effects of alloying elements on the superplastic properties of Al-Li based alloys had been investigated. The intermediate thermo-mechanical treated (ITMT) Al-2.0wt%Li, Al-2.0wt%Li-1.0wt%Mg, Al-2.0wt%Li-0.12wt%Zr and Al-2.0wt%Li-1.2wt%Cu-1.0wt%Mg-0.12wt%Zr alloys were tested in tension at various temperature (400, 450, 500 and $550^{\circ}C$) and strain rate($6.7{\times}10^{-3}$, $1.0{\times}10^{-2}$, $1.6{\times}10^{-2}$ and $5.0{\times}10^{-2}/sec$). The results were as follows : The superplasticity in binary, ternary and pentanary alloys appeared at 500 to $550^{\circ}C$, and good strain rate for superplasticity. $1.6{\times}10^{-2}/sec{\sim}1.0{\times}10^{-2}/sec$ for a binary alloy and $1.0{\times}10^{-2}/sec{\sim}6.7{\times}10^{-3}/sec$ for ternary and pentanary alloys. A Zr-added ternary alloy had best value of elongation (730%) in four alloys at $550^{\circ}C$ of tension temperature and $1.0{\times}10^{-2}/sec$ of strain rate. The strain rate was greatly dependent on tension temperature and true strain rate was more than 1.0 at all test temperature and strain rate. In binary and Mg-added teranry alloys. the necks were slightly formed and their fracture surface had lips shape, but Zr-added ternary and pentanary alloy fractured along the grain boundary without necking. Their dislocations moved to grain boundary during superplasticity deformation and arranged perpendicular to grain boundary. Super plastic deformation was made by grain boundary slip of dislocation slip creep and model of core and mantle.

  • PDF

Stellite bearings for liquid Zn-/Al-Systems with advanced chemical and physical properties by Mechanical Alloying and Standard-PM-Route

  • Zoz, H.;Benz, H.U.;Huettebraeucker, K.;Furken, L.;Ren, H.;Reichardt, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.04a
    • /
    • pp.9-10
    • /
    • 2000
  • An important business-field of world-wide steel-industry is the coating of thin metal-sheets with zinc, zinc-aluminum and aluminum based materials. These products mostly go into automotive industry. in particular for the car-body. into building and construction industry as well as household appliances. Due to mass-production, the processing is done in large continuously operating plants where the mostly cold-rolled metal-strip as the substrate is handled in coils up to 40 tons unwind before and rolled up again after passing the processing plant which includes cleaning, annealing, hot-dip galvanizing / aluminizing and chemical treatment. In the liquid Zn, Zn-AI, AI-Zn and AI-Si bathes a combined action of corrosion and wear under high temperature and high stress onto the transfer components (rolls) accounts for major economic losses. Most critical here are the bearing systems of these rolls operating in the liquid system. Rolls in liquid system can not be avoided as they are needed to transfer the steel-strip into and out of the crucible. Since several years, ceramic roller bearings are tested here [1.2], however, in particular due to uncontrollable Slag-impurities within the hot bath [3], slide bearings are still expected to be of a higher potential [4]. The today's state of the art is the application of slide bearings based on Stellite\ulcorneragainst Stellite which is in general a 50-60 wt% Co-matrix with incorporated Cr- and W-carbides and other composites. Indeed Stellite is used as the bearing-material as of it's chemical properties (does not go into solution), the physical properties in particular with poor lubricating properties are not satisfying at all. To increase the Sliding behavior in the bearing system, about 0.15-0.2 wt% of lead has been added into the hot-bath in the past. Due to environmental regulations. this had to be reduced dramatically_ This together with the heavily increasing production rates expressed by increased velocity of the substrate-steel-band up to 200 m/min and increased tractate power up to 10 tons in modern plants. leads to life times of the bearings of a few up to several days only. To improve this situation. the Mechanical Alloying (MA) TeChnique [5.6.7.8] is used to prOduce advanced Stellite-based bearing materials. A lubricating phase is introduced into Stellite-powder-material by MA, the composite-powder-particles are coated by High Energy Milling (HEM) in order to produce bearing-bushes of approximately 12 kg by Sintering, Liquid Phase Sintering (LPS) and Hot Isostatic Pressing (HIP). The chemical and physical behavior of samples as well as the bearing systems in the hot galvanizing / aluminizing plant are discussed. DependenCies like lubricant material and composite, LPS-binder and composite, particle shape and PM-route with respect to achievable density. (temperature--) shock-reSistibility and corrosive-wear behavior will be described. The materials are characterized by particle size analysis (laser diffraction), scanning electron microscopy and X-ray diffraction. corrosive-wear behavior is determined using a special cylinder-in-bush apparatus (CIBA) as well as field-test in real production condition. Part I of this work describes the initial testing phase where different sample materials are produced, characterized, consolidated and tested in the CIBA under a common AI-Zn-system. The results are discussed and the material-system for the large components to be produced for the field test in real production condition is decided. Outlook: Part II of this work will describe the field test in a hot-dip-galvanizing/aluminizing plant of the mechanically alloyed bearing bushes under aluminum-rich liquid metal. Alter testing, the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed. Part III of this project will describe a second initial testing phase where the won results of part 1+11 will be transferred to the AI-Si system. Part IV of this project will describe the field test in a hot-dip-aluminizing plant of the mechanically alloyed bearing bushes under aluminum liquid metal. After testing. the bushes will be characterized and obtained results with respect to wear. expected lifetime, surface roughness and infiltration will be discussed.

  • PDF

Effect of Pt Particle Size on the Durability of PEMFC (연료전지 촉매의 입자크기가 내구성에 미치는 영향)

  • Min, Kyoung-Won;Kim, Hyun-Jong;Han, M.K.;U, Yu-Tae;Kim, Mok-Soon;Chu, Young-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.313-318
    • /
    • 2008
  • The influence of the particle size of platinum(Pt) on the stability and activity was studied. The particle size of platinum was controlled in the range of $3.5{\sim}9\;nm$ by heat treatment of commercial Pt/C and confirmed by XRD and TEM. An accelerated degradation test was performed to evaluate the stability of platinum catalysts. Oxygen reduction reaction was monitored for the measurement of activity. As increasing the Pt particle size, the stability of Pt/C electrode was enhanced and the activity was reduced. It was confirmed that the stability of Pt/C electrode was in inverse proportion to the activity. PtCo/C alloy catalyst was used to improve the activity and stability of large-sized platinum particle. The maximum power density of commercial Pt/C was $507.6\;mV/cm^2$ and PtCo/C alloy catalyst was $585.8\;mV/cm^2$. The decrement of electrochemical surface area showed Pt/C(60%) and PtCo/C alloy catalyst(24%). It was possible to enhance both of stability and activity of catalyst by the combination of particle size control and alloying.

High Temperature Oxidation Behavior of Fe-14Cr Ferritic Oxide Dispersion Strengthened Steels Manufactured by Mechanical Alloying Process (기계적 합금화 공정으로 제조된 Fe-14Cr Ferritic 산화물 분산 강화(ODS) 합금 강의 고온 산화 거동)

  • Kim, Young-Kyun;Park, Jong-Kwan;Kim, Hwi-Jun;Kong, Man-Sik;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • This study investigates the oxidation properties of Fe-14Cr ferritic oxide-dispersion-strengthened (ODS) steel at various high temperatures (900, 1000, and $1100^{\circ}C$ for 24 h). The initial microstructure shows that no clear structural change occurs even under high-temperature heat treatment, and the average measured grain size is 0.4 and $1.1{\mu}m$ for the as-fabricated and heat-treated specimens, respectively. Y-Ti-O nanoclusters 10-50 nm in size are observed. High-temperature oxidation results show that the weight increases by 0.27 and $0.29mg/cm^2$ for the as-fabricated and heat-treated ($900^{\circ}C$) specimens, and by 0.47 and $0.50mg/cm^2$ for the as-fabricated and heat-treated ($1000^{\circ}C$) specimens, respectively. Further, after 24 h oxidation tests, the weight increases by 56.50 and $100.60mg/cm^2$ for the as-fabricated and heat-treated ($1100^{\circ}C$) specimens, respectively; the latter increase is approximately 100 times higher than that at $1000^{\circ}C$. Observation of the surface after the oxidation test shows that $Cr_2O_3$ is the main oxide on a specimen tested at $1000^{\circ}C$, whereas $Fe_2O_3$ and $Fe_3O_4$ phases also form on a specimen tested at $1100^{\circ}C$, where the weight increases rapidly. The high-temperature oxidation behavior of Fe-14Cr ODS steel is confirmed to be dominated by changes in the $Cr_2O_3$ layer and generation of Fe-based oxides through evaporation.