DOI QR코드

DOI QR Code

Fine Structure Effect of PdCo electrocatalyst for Oxygen Reduction Reaction Activity: Based on X-ray Absorption Spectroscopy Studies with Synchrotron Beam

  • Kim, Dae-Suk (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Tae-Jun (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Jun-Hyuk (School of Mechanical Engineering, Pusan National University) ;
  • Zeid, E. F. Abo (School of Mechanical Engineering, Pusan National University) ;
  • Kim, Yong-Tae (School of Mechanical Engineering, Pusan National University)
  • Received : 2010.08.30
  • Accepted : 2010.09.08
  • Published : 2010.09.30

Abstract

In this study, we have demonstrated the fine structure effect of PdCo electrocatalyst on oxygen reduction reaction activity with different alloy composition and heat-treatment time. In order to identify the intrinsic factors for the electrocatalytic activity, various X-ray analyses were used, including inductively coupled plasma-atomic emission spectrometer, transmission electron microscopy, X-ray diffractometer, and X-ray Absorption Spectroscopy technique. In particular, extended X-ray absorption fine structure was employed to extract the structural parameters required for understanding the atomic distribution and alloying extent, and to identify the corresponding simulated structures by using FEFF8 code and IFEFFIT software. The electrocatalytic activity of PdCo alloy nanoparticles for the oxygen reduction reaction was evaluated by using rotating disk electrode technique and correlated to the change in structural parameters. We have found that Pd-rich surface was formed on the Co core with increasing heating time over 5 hours. Such core shell structure of PdCo/C showed that a superior oxygen reduction reaction activity than pure Pd/C or alloy phase of PdCo/C electrocatalysts, because the adsorption energy of adsorbates was apparently reduced by lowering the dband center of the Pd skin due to a combination of the compressive strain effect and ligand effect.

Keywords

References

  1. S. Mukerjee, S. Srinivasan, M.P. Soriaga, and J. McBreen, J.Electrochem. Soc., 142, 1409 (1995). https://doi.org/10.1149/1.2048590
  2. S.F. Parker, C.D. Frost, M. Telling, P. Albers, M. Lopez, and K. Seitz, Catal. Today, 114, 418 (2006). https://doi.org/10.1016/j.cattod.2006.02.043
  3. F.J. Lai, L.S. Sarma, H.L. Chou, D.G. Liu, C.A. Hsieh, J.F. Lee, and B.J. Hwang, J. Phys. Chem. C, 113, 12674 (2009). https://doi.org/10.1021/jp903105e
  4. M.H. Shao, T. Huang, P. Liu, J. Zhang, K. Sasaki, M.B. Vukmirovic, and R.R. Adzic, Langmuir, 22, 10409 (2006). https://doi.org/10.1021/la0610553
  5. M.H. Shao, K. Sasaki, and R.R. Adzic, J. Am. Chem. Soc., 128, 3526 (2006). https://doi.org/10.1021/ja060167d
  6. V. Raghuveer, P.J. Ferreira, and A. Manthiram, Electrochem. Commun., 8, 807 (2006). https://doi.org/10.1016/j.elecom.2006.03.022
  7. V. Raghuveer, A. Manthiram, and A. J. Bard, J. Phys. Chem. B, 109, 22909 (2005). https://doi.org/10.1021/jp054815b
  8. J.L. Fernandez, V. Raghuveer, A. Manthiram, and A.J. Bard, J. Am. Chem. Soc., 127, 13100 (2005). https://doi.org/10.1021/ja0534710
  9. A. Ishihara, Y. Shibata, S. Mitsushima, and K. Ota, J. Electrochem. Soc., 155, B400 (2008). https://doi.org/10.1149/1.2839606
  10. R.R. Adzic, J. Zhang, K. Sasaki, M.B. Vukmirovic, M. Shao, J.X. Wang, A.U. Nilekar, M. Mavrikakis, J.A. Valerio, and F. Uribe, Top. Catal., 46, 249 (2007). https://doi.org/10.1007/s11244-007-9003-x
  11. H. Liu and A. Manthiram, Energy Environ. Sci., 2, 124 (2009). https://doi.org/10.1039/b814708f
  12. H. Liu and A. Manthiram, Electrochem. Commun., 10, 740 (2008). https://doi.org/10.1016/j.elecom.2008.02.022
  13. L. Zhang, K. Lee, and J. Zhang, Electrochim. Acta, 52, 3088 (2007). https://doi.org/10.1016/j.electacta.2006.09.051
  14. G. Bozzolo, R.D. Noebe, J. Khalil, and J. Morse, Appl Surf. Sci., 219, 149 (2003). https://doi.org/10.1016/S0169-4332(03)00591-9
  15. J.L. Rousset, J.C. Bertolini, and P. Miegge, Phys. Rev. B, 53, 4947 (1996). https://doi.org/10.1103/PhysRevB.53.4947
  16. B. Hammer, J.K. Nørskov, C.G. Bruce, and K. Helmut, Advances in Catalysis, Academic Press, California (2000).
  17. J.R. Kitchin, J.K. Nørskov, M.A. Barteau, and J.G. Chen, J. Chem. Phys., 120, 10240 (2004). https://doi.org/10.1063/1.1737365
  18. B. Mierzwa, J. Alloy. Compd., 362, 178 (2004). https://doi.org/10.1016/S0925-8388(03)00581-4
  19. S. Mukerjee and J. McBreen, J. Electroanal. Chem., 448, 163 (1998). https://doi.org/10.1016/S0022-0728(97)00018-1
  20. S. Mukerjee, S. Srinivasan, M.P. Soriaga, and J. McBreen, J. Electrochem. Soc., 142, 1409 (1995). https://doi.org/10.1149/1.2048590
  21. F.B. Noronha, M. Schmal, B. Moraweck, P. Delichere, M. Brun, F. Villain, and R. Frety, J. Phys. Chem., 104, 5478 (2000). https://doi.org/10.1021/jp992777o
  22. J. Greeley, J.K. Nørskov, and M. Mavrikakis, Annu. Rev. Phys. Chem., 53, 319 (2002). https://doi.org/10.1146/annurev.physchem.53.100301.131630
  23. B. Hammer and J.K. Nørskov, Surf. Sci., 343, 211 (1995). https://doi.org/10.1016/0039-6028(96)80007-0
  24. M. Newville, J. Synchrotron Radiat., 8, 322 (2001). https://doi.org/10.1107/S0909049500016964
  25. B. Ravel, J. Synchrotron Radiat., 8, 314 (2001). https://doi.org/10.1107/S090904950001493X
  26. B. Ravel and M. Newville, J. Synchrotron Radiat., 12, 537 (2005). https://doi.org/10.1107/S0909049505012719
  27. M. Newville, J. Synchrotron Radiat., 8, 96 (2001). https://doi.org/10.1107/S0909049500016290
  28. M. Newville, P. L vi š, Y. Yacoby, J.J. Rehr, and E.A. Stern, Physical Review B, 47, 14126 (1993). https://doi.org/10.1103/PhysRevB.47.14126
  29. J.J. Rehr and R.C. Albers, Rev. Mod. Phys., 72, 621 (2000). https://doi.org/10.1103/RevModPhys.72.621
  30. S.P. Jiang, Z. Liu, H.L. Tang, and M. Pan, Electrochim. Acta, 51, 5721 (2006). https://doi.org/10.1016/j.electacta.2006.03.006
  31. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, and R.R. Adzic, J. Phys. Chem. B, 108, 10955 (2004). https://doi.org/10.1021/jp0379953
  32. F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, and R.R. Adzic, J. Phys. Chemistry B, 111, 404 (2007).
  33. F.H.B. Lima, J. Zhang, M.H. Shao, K. Sasaki, M.B. Vukmirovic, E.A. Ticianelli, and R.R. Adzic, J. Solid State Electr., 12, 399 (2008). https://doi.org/10.1007/s10008-007-0418-x
  34. A.U. Nilekar, Y. Xu, J.L. Zhang, M.B. Vukmirovic, K. Sasaki, R.R. Adzic, and M. Mavrikakis, Top. Catal., 46, 276 (2007). https://doi.org/10.1007/s11244-007-9001-z
  35. H. Liu, W. Li, and A. Manthiram, Appl. Catal. B-Environ., 90, 184 (2009). https://doi.org/10.1016/j.apcatb.2009.03.008
  36. M.H. Shao, P. Liu, and R.R. Adzic, J. Am. Chem. Soc., 128, 7408 (2006). https://doi.org/10.1021/ja061246s
  37. D.-S. Kim, E.F.A. Zeid, and Y.-T. Kim, Electrochim. Acta, 55, 3628. https://doi.org/10.1016/j.electacta.2010.01.055
  38. K. Lee, O. Savadogo, A. Ishihara, S. Mitsushima, N. Kamiya, and K.-i. Ota, J. Electrochem. Soc., 153, A20 (2006). https://doi.org/10.1149/1.2128101

Cited by

  1. Preparation, characterization and electrocatalytic activity for oxygen reduction reaction in PEMFCs of bimetallic PdNi nanoalloy vol.6, pp.4, 2017, https://doi.org/10.1007/s40243-017-0103-7
  2. Role of the surface–subsurface interlayer interaction in enhancing oxygen hydrogenation to water in Pd3Co alloy catalysts vol.15, pp.29, 2013, https://doi.org/10.1039/c3cp50618e
  3. DFT investigations on the interaction of oxygen reduction reaction intermediates with Au (100) and bimetallic Au/M (100) (M = Pt, Cu, and Fe) surfaces vol.4, pp.1, 2013, https://doi.org/10.1186/2228-5547-4-33