DOI QR코드

DOI QR Code

Effect of Pt Particle Size on the Durability of PEMFC

연료전지 촉매의 입자크기가 내구성에 미치는 영향

  • Published : 2008.11.30

Abstract

The influence of the particle size of platinum(Pt) on the stability and activity was studied. The particle size of platinum was controlled in the range of $3.5{\sim}9\;nm$ by heat treatment of commercial Pt/C and confirmed by XRD and TEM. An accelerated degradation test was performed to evaluate the stability of platinum catalysts. Oxygen reduction reaction was monitored for the measurement of activity. As increasing the Pt particle size, the stability of Pt/C electrode was enhanced and the activity was reduced. It was confirmed that the stability of Pt/C electrode was in inverse proportion to the activity. PtCo/C alloy catalyst was used to improve the activity and stability of large-sized platinum particle. The maximum power density of commercial Pt/C was $507.6\;mV/cm^2$ and PtCo/C alloy catalyst was $585.8\;mV/cm^2$. The decrement of electrochemical surface area showed Pt/C(60%) and PtCo/C alloy catalyst(24%). It was possible to enhance both of stability and activity of catalyst by the combination of particle size control and alloying.

본 연구에서는 백금의 입자크기가 내구성과 활성에 미치는 영향을 고찰하였다. 상용 Pt/C의 열처리를 통해 백금 입자 크기를 $3.5{\sim}9\;nm$로 조절하였고, XRD와 TEM을 통해 이를 확인하였다. 촉매의 내구성 분석을 위해 가속 실험을 실시하였고, 촉매 활성 측정을 위해 산소환원반응 실험을 하였다. 백금의 입자크기를 증가시킬수록 내구성은 향상되었으나 촉매의 활성이 저하되었다. 즉 촉매의 내구성과 활성은 반비례관계가 성립된다는 것을 확인하였다. 그리고 저하된 촉매 활성과 내구성을 향상시키기 위해, 합금 촉매를 사용하였다.상용 Pt/C의 최대 전력 밀도는 약 $507.6\;mV/cm^2$ 이고, PtCo/C 합금촉매는 $585.8\;mV/cm^2$이었다. 전기화학적 표면적은 상용 Pt/C는 약 60%정도 감소하였고, PtCo/C 합금촉매는 약 24%정도의 감소율을 나타냈다. 따라서 백금의 입자 크기 조절과 합금화를 통해 백금의 내구성과 활성을 동시에 높일 수 있었다.

Keywords

References

  1. J. Shim, D. Y. Yoo, and J. S. Lee, 'Characteristics for Electrocatalytic Properties and Hydrogen-oxygen Adsorption of Platinum Ternary Alloy Catalysts In Polymer Electrolyte Fuel Cell', Electrochimica Acta, 45, 1943-1951 (2000) https://doi.org/10.1016/S0013-4686(99)00414-4
  2. S. Mukerjee and S. Srinivasan, 'Enhanced Electrocatalysis of Oxygen Reduction on Platinum Alloys In Proton Exchange Membrane Fuel Cells', J. Electroanal, Chem., 357, 201-224 (1993) https://doi.org/10.1016/0022-0728(93)80380-Z
  3. U. A. Paulus, A. Wokaun, G. G. Scherer, T. J. Schmidt, V. Stamenkovic, N. M. Markovic, and P. N. Ross, 'Oxygen Reduction on High Surface Area Pt-based Alloy Catalysts in Comparison To Well Defined Smooth Bulk Alloy Electrodes', Electrochimica Acta, 47, 3787-3798 (2002) https://doi.org/10.1016/S0013-4686(02)00349-3
  4. S. Mukerjee, S. Srinivasan, and M. P. Soriaga, 'Role of Structural and Electronic Properties of Pt and Pt Alloys on Electrocatalysis of Oxygen Reduction', J. Electrochem, Soc., 142, 1409-1422 (1995) https://doi.org/10.1149/1.2048590
  5. Y. Shao-Horn, W. C. Sheng, S. Chen, P. J. Ferreira, E. F. Holdy, and D. Morgan, 'Instability of suPported Platinum Nanoparticles in Low Temperature Fuel Cells', top catal, 46, 285-305 (2007) https://doi.org/10.1007/s11244-007-9000-0
  6. 김이영, 김수길, 한종희, 김한성, '직접 에탄올 연료전지용 백금합금촉매의 합성과 특성분석', 한국전기화학회지, 11(2), 109-114 (2008) https://doi.org/10.5229/JKES.2008.11.2.109
  7. 김하석, 서애리, 이재승, 설용건, 유승을, '고분자 전해질 연료전지용 삼원합금 촉매의 성능과 안정성 조사', 한국전기화학회 (학술대회논문집 ),수소연료전지공동심포지움 2005논문집, 67-70 (2005)
  8. 민명기, 김하석, '저온형 연료전지의 산소 환원반응을 위한 백금이 코팅된 철 나노 입자의 제조', 한국전기화학회(학술대회논문집), 연료전지심포지움 2002논문집, 135-138 (2002)
  9. 박광진, 이창보, 김정현, 백승욱, 배중면, '중저온형 SOFC를 위한 PSCF3737 공기극 물질의 특성 및 최적화에 관한 연구', 한국전기화학회지, 10(3), 207-212 (2007) https://doi.org/10.5229/JKES.2007.10.3.207
  10. Jiajun Wang, Geping Yin, Yuyan Shao, Sheng Zhang, Zhenbo Wang, and Yunzhi Gao, 'Effect of cArbon Black Support Corrosion on the Durability of Pt/C Catalyst', J. Power Sources, 171, 331-339 (2007) https://doi.org/10.1016/j.jpowsour.2007.06.084
  11. J. R. Kim, W. J. Myeong, and S. K. Ihm, 'Characteristics in Oxygen Storage Capacity of Ceria-zirconia Mixed Oxides Prepared by Continuous Hydrothermal Synthesis in Supercritical Water', Appl. Catal. B: Environ, 71, 57 (2007) https://doi.org/10.1016/j.apcatb.2006.08.015
  12. P. Yu, M. Pemberton, and P. Plasse, 'PtCo/C Cathode Catalyst for Improve Durability in PEMFCs', J. Power Sources, 144, 11-20 (2005) https://doi.org/10.1016/j.jpowsour.2004.11.067
  13. H. R. Colon-mercado and B. N. Popov, 'Stability of Platinum Based Alloy Cathode Catalysts in PEM fuel cells', J. Power Sources, 155, 253 (2006) https://doi.org/10.1016/j.jpowsour.2005.05.011
  14. P. Meyers and R. M. Darling, abstract 1212, The Electrochemical Society Meeting, Abstract 2003-1, Paris, France (2003)
  15. R. Borup, M. Inbody, J. Davey, D. Wood, F. Gazon, J. Tafoya, J. Xie, and S. Pacheco, PEM fuel cell durability, DOE hydrogen program, FY, progress report, (2004)

Cited by

  1. Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC vol.21, pp.2, 2012, https://doi.org/10.7844/kirr.2012.21.2.034