• Title/Summary/Keyword: surface subsidence

Search Result 158, Processing Time 0.023 seconds

SURFACE DEFORMATION MONITORING USING TERRASAR-X INTERFEROMETRY

  • Kim, Sang-Wan;Wdowinski, Shimon;Dixon, Tim
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.422-425
    • /
    • 2008
  • TerraSAR-X is new radar satellite operated at X-band, multi polarization, and multi beam mode. Compared with C-band or L-band SAR, the X-band system inherently suffers from more temporal decorrelation, but is more sensitive to surface deformation monitoring due to short wavelength (3.1 cm) and high spatial resolution (1m-3m). It is generally expected that sensitivity to estimate surface movement using TerraSAR-X will be increased by the factor of 10, compared to current C-band system with low spatial resolution such as ERS-2, Envisat. Many urban areas are experiencing land subsidence due to water, oil and natural gas withdrawal, underground excavation, sediment compaction, and so on. Monitoring of surface deformation is valuable for effectively limiting damage areas. In addition high accuracy and spatially dense subsidence map can be achieved by X-band InSAR observation, promoting identification and separation of various subsidence processes and leading to enhanced understanding via mechanical modeling. In this study we will introduce some initial InSAR results using new TerraSAR-X SAR data for surface deformation monitoring.

  • PDF

Assessment of Sinkhole Occurrences Using Fuzzy Reasoning Techniques

  • Deb D.;Choi S.O.
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2004.10a
    • /
    • pp.171-180
    • /
    • 2004
  • Underground mining causes surface subsidence long after the mining operation had been ceased. Surface subsidence can be in the form of saucer-shaped depression or collapsed chimneys or sinkholes. Sinkhole formations are predominant over shallow-depth room and pillar mines having weak overburden strata. In this study, occurrences of sinkholes due to mining activity are assessed based on local geological conditions and mining parameters using fuzzy reasoning techniques. All input and output parameters are represented with linguistic hedges. Numerous fuzzy rules are developed to relate sinkhole occurrences with input parameters using fuzzy relational matrix. Based on the combined fuzzy rules, possibility of sinkhole occurrences can be ascertained once the geological and mining parameters of any area are known.

  • PDF

OBSERVATION OF SUBSIDENCE AT SHINHO INDUSTRIAL COMPLEX USING PERMANENT SCATTERERS

  • Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.471-475
    • /
    • 2002
  • To detect ground subsidence, the permanent scatterer SAR interferometry is applied to the Shinho industrial complex. Eleven JERS-1 images were acquired in the study area between October 1996 and September 1998. All SAR data were co-registered to one master scene (January 8, 1998) and thus 10 interferograms were obtained in a time series. In order to determine permanent scatterers, coherence maps as well as the interferograms were generated and exploited. The coherence at the selected PSs was larger than 0.4 in a 515 sub-window and 0.5 in a 39 sub-window. Twenty-nine PSs within the reclaimed land and 8 PSs (as reference phase) outside the plant were selected for the analysis. The 29 PSs were grouped into 5 sub-groups. We removed the reference phase, which was estimated from 8 outside PSs that were considered as phases free of displacement, from the phases at PSs inside the plant. Residual phases could be interpreted as surface displacement and DEM error. The subsidence of about 40 cm was detected at group 4, while surface displacements were negligible in the rest groups.

  • PDF

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

Effects of Reinforced Pseudo-Plastic Backfill on the Behavior of Ground around Cavity Developed due to Sewer Leakage (하수관 누수에 의해 발생되는 공동 주변 지반의 거동에 대한 가소성유동화토의 보강효과)

  • Oh, Dongwook;Kong, Sukmin;Lee, Daeyoung;Yoo, Yongseon;Lee, Yongjoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.12
    • /
    • pp.13-22
    • /
    • 2015
  • Developed ground cavity due to leakage of decrepit old sewer pipe causes ground surface settlement and brittle fracture of pavement. Recently, for 5 years, frequency of occurrence of ground subsidence phenomenon tends to increase rapidly and/or steadily. It is difficult to investigate ground surface settlement and/or subsidence in urban area because most ground surfaces are covered with asphalt or concrete pavement. In this research, therefore, ground surface settlement, influence zone and settlement of sewer pipe were analyzed using finite element method. Not only reinforced effect of pseudo-plastic backfill that is applied to prevent ground surface settlement or subsidence spot, was compared and analyzed using numerical analysis program, but also direct shear test was carried out to determine strength parameters of pseudo-plastic backfill.

Contraction of a newly reclaimed mudflat detected by Differential SAR Interferometry

  • Lee Hoonyol;Chi Kwang Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.57-59
    • /
    • 2004
  • This paper reports the observation of the interferometric synthetic aperture radar (InSAR) phase anomaly on a newly reclaimed mudflat, Hwaong, in west coast of Korea, detected by a series of Radarsat-l SAR data obtained mostly during 2003. The observed phase anomaly could be from subsidence of mud land caused by volumetric contraction of mud in dry season. This process must have been initiated from March 2002 when tidal water supply to this region was permanently blocked by the newly constructed embankment. The maximum subsidence rate measured from InSAR signal is about 3 cm per month. The local heterogeneity of the subsidence rate over the reclaimed mudflat may indicate various mud composition, surface-subsurface hydrological processes, or subsurface information of the mud and basement rock structure. In-situ measurement must follow to support this observation from space.

  • PDF

Investigation of possible causes of sinkhole incident at the Zonguldak Coal Basin, Turkey

  • Genis, Melih;Akcin, Hakan;Aydan, Omer;Bacak, Gurkan
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.177-185
    • /
    • 2018
  • The subsidence mechanism of ground surface is a complex phenomenon when multiple seam coal mining operations are carried out. Particularly, the coal mining beneath karstic formations causes a very special form of subsidence. The subsidence causes elasto-plastic deformation of the karstic layers and the collapse of cavities leads to dolinization and/or sinkhole formation. In this study, a sinkhole with a depth of 90 m and a width of 25 m formed in Gelik district within the coal-basin of Zonguldak (NW, Turkey) induced by multiple seam coal mining operations in the past has been presented as a case-history together with two-dimensional numerical simulations and InSAR monitoring. The computational results proved that the sinkhole was formed as a result of severe yielding in the close vicinity of the faults in contact with karstic formation due to multiple seam longwall mining at different levels.

Comparison of the borehole and tomography data in subsidence area using 3D visualization (3D 가시화를 이용한 지반침하지역의 시추자료와 토모그래피 자료의 비교)

  • 안조범;윤왕중;김진회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.231-236
    • /
    • 2002
  • The understanding of underground geologic structures is of great importance for the surface and subsurface constructions, prevention of natural hazards such as land-slides and subsidence, and many other areas. To get the information on the geologic conditions, many of investigations such as geologic survey, geophysical explorations, testings on the physical properties of rocks, drilling tests and logging, and groundwater surveys are usually conducted, and tremendous data are collected accordingly. In general, however, these huge amount of data are interpreted in the individual areas only. If these data are analyzed collectively, much more information on the geologic conditions can be obtained. In this study, 3D visualization of borehole logging data is attempted. Borehole logging data are obtained at the urban subsidence area. To compare the 3D logging data with other geologic and geophysical data such as resistivity tomography data, interface module was developed. The 3D visualization of logging data and the comparison with other data can be helpful for the understanding of underground geologic structures.

  • PDF

Ground Stability Assessement for the Mining Induced Subsidence Area (지하공동에 의한 지표침하지역의 지반안정성 평가)

  • 권광수;박연준;신희순;신중호
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.170-185
    • /
    • 1994
  • Surface subsidence is one of the problems caused by mined out caverns. Depending on the geologic conditions and mining methods, subsidence can occur in various forms. This report describes the ground stability assessment for the mining induced subsidence area where unfilled caverns still exist abandoned. Geologic features which could affect the stability of the ground were investigated and all the possible geophysical methods were employed to obtain data that could explain the state of the ground in question. Basic rock tests were conducted from the drill cores and rock mass classification was performed by core logging and borehole camera investigation. Numerical analyses were carried out to predict the ground stability using data obtained by various investigations. The result could have been more reliable if in-situ stress were measure and reflected in the numerical analysis.

  • PDF

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.