• Title/Summary/Keyword: surface structure control

Search Result 836, Processing Time 0.028 seconds

A Simple Learning Variable Structure Control Law for Rigid Robot Manipulators

  • Choi, Han-Ho;Kuc, Tae-Yong;Lee, Dong-Hun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.354-359
    • /
    • 2003
  • In this paper, we consider the problem of designing a simple learning variable structure system for repeatable tracking control of robot manipulators. We combine a variable structure control law as the robust part for stabilization and a feedforward learning law as the intelligent part for nonlinearity compensation. We show that the tracking error asymptotically converges to zero. Finally, we give computer simulation results in order to show the effectiveness of our method.

  • PDF

Robustness and Actuator Bandwidth of MRP-Based Sliding Mode Control for Spacecraft Attitude Control Problems

  • Keum, Jung-Hoon;Ra, Sung-Woong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.651-658
    • /
    • 2009
  • Nonlinear sliding surface design in variable structure systems for spacecraft attitude control problems is studied. A robustness analysis is performed for regular form of system, and calculation of actuator bandwidth is presented by reviewing sliding surface dynamics. To achieve non-singular attitude description and minimal parameterization, spacecraft attitude control problems are considered based on modified Rodrigues parameters (MRP). It is shown that the derived controller ensures the sliding motion in pre-determined region irrespective of unmodeled effects and disturbances.

Estimation of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Controllers (크기가 제한된 제어기를 갖는 가변구조제어 시스템의 점근 안정 영역 추정)

  • 최한호;국태용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.8
    • /
    • pp.616-622
    • /
    • 2003
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded controllers. Using linear matrix inequalities(LMIs) we estimate the ASR and show the exponential stability of the closed-loop control system in the estimated ASR. We give a simple LMI-based algorithm to get estimates of the ASR. We also give a synthesis algorithm to design a switching surface which will make the estimated ASR big. Finally, we give numerical examples in order to show that our method can give better results than the previous ones for a certain class of uncertain variable structure systems with bounded controllers.

Implementations of the variable structure control system using neural networks (신경회로망을 이용한 가변 구조 제어 시스템의 구현)

  • Yang, Oh;Yang, Hai-Won
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.124-133
    • /
    • 1996
  • This paper presents the implementation of variable structure control system for a linear or nonlinear system using neural networks. The overall control system consists of neural network controller and a reaching mode controller. While the former approximates the equivalent control input on the sliding surface, the latter is used to bring the entire system trajectories toward the sliding surface. No supervised learning procedures are needed and the weights of the neural network are tuned on-line automatically. The neural netowrk-based variable structure control system is applied to a nonlinare unstable inverted pendulum system through computer simulations, and implemented using a microcomputer (80486-50MHz) and applied to the DC servomotor position control system. Simulation and experimental results show the expected approximation sliding property is occurred. The proposed controller is compared with a PID controller and shows better performance than the PID controller in abrupt plant parameter change.

  • PDF

An Improved Estimate of the Asymptotic Stability Region for the Uncertain Variable Structure Systems with Bounded Control (크기가 제한된 입력을 갖는 가변구조제어 시스템을 위한 개선된 안정 영역 추정값)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.492-495
    • /
    • 2005
  • This paper deals with the problem of estimating the asymptotic stability region(ASR) of uncertain variable structure systems with bounded control. Using linear matrix inequalities(LMIs) we estimate the ASR and we show the exponential stability of the closed-loop control system in the estimated ASR. We show that our estimate is always better than the estimate of [3].

A study on the position control of an electro-hydraulic servomechanism using variable structure system (가변구조를 이용한 전기-유압서어보계의 위치제어에 관한 연구)

  • 허순영;권기수;하석훈;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.299-304
    • /
    • 1988
  • This paper describes the application of the variable structure control(VSC) concept for the position control of electro-hydraulic servomtor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state surface with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems.

  • PDF

Variable structure control with fuzzy reaching law method for nonlinear systems (비선형 시스템에 대한 퍼지 도달 법칙을 가지는 가변 구조 제어)

  • Sa-Gong, Seong-Dae;Lee, Yeon-Jeong;Choe, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.279-286
    • /
    • 1996
  • In this paper, variable structure control(VSC) based on reaching law method with fuzzy inference for nonlinear systems is proposed. The reaching law means the reaching condition which forces an initial state of system to reach switching surface in finite time, and specifies the dynamics of a desired switching function. Since the conventional reaching law has fixed coefficients, the chattering can be existed largely in sliding mode. In the design of a proposed fuzzy reaching law, we fuzzify RP(representative point)'s orthogonal distance to switching surface and RP's distance the origin of the 2-dimensional space whose coordinates are the error and the error rate. The coefficients of the reaching law are varied appropriately by the fuzzy inference. Hence the state of system in reaching mode reaches fastly switching surface by the large values of reaching coefficients and the chattering is reduced in sliding mode by the small values of those. And the effectiveness of the proposed fuzzy reaching law method is showen by the simulation results of the control of a two link robot manipulator.

  • PDF

A New Robust Discrete Integral Static Output Feedback Variable Structure Controller with Disturbance Observer and Integral Dynamic-Type Sliding Surface for Uncertain Discrete Systems (불확실 이산 시스템을 위한 외란관측기와 적분 동특성형 슬라이딩 면을 갖는 새로운 둔감한 이산 적분 정적 출력 궤환 가변구조제어기)

  • Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1289-1294
    • /
    • 2010
  • In this paper, a new discrete integral static output feedback variable structure controller based on the a new integral dynamic-type sliding surface and output feedback discrete version of the disturbance observer is suggested for the control of uncertain linear systems. The reaching phase is completely removed by introducing a new proposed integral dynamic-type sliding surface. The output feedback discrete version of disturbance observer is presented for effective compensation of uncertainties and disturbance. A corresponding control with disturbance compensation is selected to guarantee the quasi sliding mode on the predetermined integral dynamic-type sliding surface for guaranteeing the designed output in the integral dynamic-type sliding surface from any initial condition for all the parameter variations and disturbances. Using discrete Lyapunov function, the closed loop stability and the existence condition of the quasi sliding mode is proved. Finally, an illustrative example is presented to show the effectiveness of the algorithm.

Variable Structure Control Design for Time-Delay Systems (시간 지연 시스템을 위한 가변 구조 제어기 설계)

  • Choi, Han-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1208-1211
    • /
    • 2010
  • We propose a variable structure control design method for a class of multivariable uncertain state-delayed systems which can be represented by polytopic models. In terms of LMIs, we derive a sufficient condition for the existence of a linear sliding surface guaranteeing the asymptotic stability of the sliding mode dynamics. We parameterize the sliding surface by using the solution of the LMI existence condition. We also give a switching feedback control strategy guaranteeing stable sliding mode. By using a numerical example, we show that our method supplements the existing results and it can be better than the existing results.

Design of the output feedback variable structure control system for multivariable system (다변수 계통에 대한 출력궤환 가벼구조 제어계에 관한 연구)

  • 이기상;조동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.197-202
    • /
    • 1991
  • Recently, an output feedback variable structure control scheme(OFVSCS) is proposed to remove the assumption of full state availability and to make the application of VSC scheme to the high order systems with unmeasurable state variables possible. In this paper, a design method of an output feedback variable structure control system (IOFVSCS) that guarantees the invariance of the sliding mode against process parameter variation and external disturbance is proposed. The IOFVSCS is composed of two components; dynamic switching surface driven by measured I/0 informations and switching control input generator driven by switching surface information and measured output, where the two components are constructed by adopting unknown vector modelling approach. The invariance condition for the IOFVSCS is proved to be the same as that of the conventional VSCS. Simulation results show that the IOFVSCS can be designed to have robust properties better than that of the conventional VSCS in spite that the IOFVSCS is driven by small amount of measured information.

  • PDF