• Title/Summary/Keyword: surface reconstruction

Search Result 567, Processing Time 0.032 seconds

Reconstruction of Head Surface based on Cross Sectional Contours (단면 윤곽선을 기반으로 한 두부표변의 재구성)

  • 한영환;성현경;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.365-373
    • /
    • 1997
  • In this paper, a new method of the 3D(dimensional) image reconstruction is proposed to build up the 3D image from 2D images using digital image processing techniques and computer graphics. First, the new feature extraction algorithm that doesn't need various input parameters and is not affected by threshold is adopted This new algorithm extracts feature points by eliminating some undesirable points on the ground of the connectivity. Second, as the cast function to reconstruct surfaces using extracted feature points, the minimum distance measure between two plane images has been adopted According to this measure, the surface formation algorithm doesn't need complex calculation and takes the form of triangle or trapezoid To investigate usefulness, this approach has been applied to a head CT image and compared with other methods. Experimental comparisons show that the suggested algorithm yields better performance on feature extraction than others. In contrast with the other methods, the complex calculation for surface formation in the proposed algorithm is not necessary.

  • PDF

Composite $G^{1}$ surface construction from 2D cross-sections (2차원 단면 데이터로부터 복합 $G^{1}$ 자유곡면 생성)

  • Park, Hyung-Jun;Na, Sang-Wook;Bae, Chae-Yeol
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.05a
    • /
    • pp.44-47
    • /
    • 2004
  • This paper proposes an approach for composite surface reconstruction from 2D serial cross-sections, where the number of contours varies from section to section. In a triangular surface-based approach taken in most reconstruction methods, a triangular $G^{1}$ surface is constructed by stitching triangular patches over a triangular net generated from the compiled contours. In the proposed approach, the resulting surface is a composite $G^{1}$ surface consisting of three kinds of surfaces: skinned, surface is first represented by a B-spline surface approximating the serial contours of the skinned region and then serial contours of the skinned region and then transformed into a mesh of rectangular Bezier patches. On branched and capped regions, triangular $G^{1}$ surfaces are constructed so that the connections between the triangular surfaces and their neighboring surfaces are $G^{1}$ continuous. Since each skinned region is represented by an approximated rectangular $G^{2}$ surface instead of an interpolated triangular $G^{1}$ surface, the proposed approach can provide more visually pleasing surfaces and realize more efficient data reduction than the triangular surface-based approach. Some experimental results demonstrate its usefulness and quality.

  • PDF

A Surface Reconstruction Method from Contours Based on Dividing Virtual Belt (가상벨트 분할에 기반한 등고선으로부터의 표면재구성 방법)

  • Choi, Young-Kyu;Lee, Seung-Ha
    • The KIPS Transactions:PartB
    • /
    • v.14B no.6
    • /
    • pp.413-422
    • /
    • 2007
  • This paper addresses a new technique for constructing surface model from a set of wire-frame contours. The most difficult problem of this technique, called contour triangulation, arises when there are many branches on the surface, and causes lots of ambiguities in surface definition process. In this paper, the branching problem is reduced as the surface reconstruction from a set of virtual belts and virtual canyons. To tile the virtual belts, a divide-and-conquer strategy based tiling technique, called the BPA algorithm, is adopted. The virtual canyons are covered naturally by an iterative convex removal algorithm with addition of a center vertex for each branching surface. Compared with most of the previous works reducing the multiple branching problem into a set of tiling problems between contours, our method can handle the problem more easily by transforming it into more simple topology, the virtual belt and the virtual canyon. Furthermore, the proposed method does not involve any set of complicated criteria, and provides a simple and robust algorithm for surface triangulation. The result shows that our method works well even though there are many complicated branches in the object.

Error analysis of 3-D surface parameters from space encoding range imaging (공간 부호화 레인지 센서를 이용한 3차원 표면 파라미터의 에러분석에 관한 연구)

  • 정흥상;권인소;조태훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.375-378
    • /
    • 1997
  • This research deals with a problem of reconstructing 3D surface structures from their 2D projections, which is an important research topic in computer vision. In order to provide robust reconstruction algorithm, that is reliable even in the presence of uncertainty in the range images, we first present a detailed model and analysis of several error sources and their effects on measuring three-dimensional surface properties using the space encoded range imaging technique. Our approach has two key elements. The first is the error modeling for the space encoding range sensor and its propagation to the 3D surface reconstruction problem. The second key element in our approach is the algorithm for removing outliers in the range image. Such analyses, to our knowledge, have never attempted before. Experimental results show that our approach is significantly reliable.

  • PDF

A NUMERICAL STUDY OF THE FREE SURFACE EFFECT ON RISING BUBBLE (자유표면이 상승기포의 파괴에 미치는 영향에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.376-379
    • /
    • 2010
  • Bubble rising phenomenon is widely founded in many industrial applications such as a stream generator in power plant. Many experimental and numerical researches have been already performed to predict dynamic behavior of the bubble rising process. Recently numerical approaches are getting popular since it can offer much detailed information which is almost impossible to obtain from the experiments. Rising bubble could penetrate through the top free surface which makes the problem much more complicate in addition to the phase changing effect even with latest numerical techniques. In this paper, the top free surface effect on rising bubble has been investigated. The gas-liquid interface was explicitly tracked using high-order Level Contour Reconstruction Method(LCRM) which is a hybridization of Front-Tracking and Level-Set method. Break-up behavior of rising bubble at free surface showed different characteristics with initial diameter of bubble.

  • PDF

A Molecular Dynamics Simulation of Au(001)Surface Reconstruction (MD 모사법에 의한 Au(001)면의 재배열에 관한 연구)

  • 백선목
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.4
    • /
    • pp.367-372
    • /
    • 1995
  • We investigate the Au(001) surface reconstruction, numerically, by Molecular Dynamics (MD) simulation. We find that the top-most layer of Au(001) surface is reconstructed to a contracted hexagonal face, and relaxed about 0.05$\AA$ upward at room temperature. The contraction ratio with respect to a unreconstructed Au(111) surface is about 3.5%. The hexagonal layer is slightly distorted and buckled. The surface corrugation is found to be about 0.28$\AA$ on average. In our earlier work we have predicted the in-plane orientation of the reconsturcted layer to be either $0^{\circ}$ or $0.7^{\circ}$ depending on the size of the cluster. However, we find only $0.0^{\circ}$ in this simulation because the size of the cluster correspoding to the $0.7^{\circ}$ orientation is larger than the current limitation of MD simulation. These findings are in good agreement with experimental results.

  • PDF

Real time observation of reconstruction transition on GaAs (111)B vicinal surface by scanning electron microscopy

  • Ren, Hong-Wen;Tatau Nishinaga
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.19-37
    • /
    • 1996
  • Scanning electron microscopy (SEM) has been applied to observe directly the {{{{ SQRT { 19} }}}}${\times}${{{{ SQRT { 19} }}}} and (1${\times}$1)HT reconstructions and the transition associated step bunching on the GaAs (111)B surfaces under As pressure. Close to the transition point, {{{{ SQRT { 19} }}}}${\times}${{{{ SQRT { 19} }}}}an d (1${\times}$1)HT reconstructions are observed in dark and bright domains by SEM and determined by micro-probe reflection high-energy electron diffraction (${\mu}$-RHEED). The reconstruction diagram shows hyster-esis. The stepped surface morphology during the reconstruction transition was unstable. Heavy step bunching with rough macrostep edges was observed.

  • PDF

A study for the- reconstruction of free field sound source from the measured data in a closed wall by using Boundary Element Method (경계요소법을 이용한 음원의 자유음장 복원에 대한 연구)

  • Choi, Han-Lim;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1747-1751
    • /
    • 2000
  • It is well known that acoustic signals, even measured in an anechoic chamber, can be contaminated due to the wall interference. Therefore, it is necessary to reconstruct the original signal from the measured data, which is very critical for the case of measurement of source signal in a water tunnel. In this thesis, new methods for the reconstruction of sound sources are proposed and validated by using Boundary Element Method from measured data in a closed space. The inverse Helmholtz integral equation and its normal derivative are used for the reconstruction of sound sources in a closed space. An arbitrary Kirchhoff surface over the sources is proposed to solve the surface information instead of direct solution for the source. Although sound sources are not directly known by the inverse Helmholtz equation, the original sound source of pressure-field outside of the wall can be indirectly obtained by using this new method.

  • PDF

THREE-DIMENSIONAL VOLUME RECONSTRUCTION BASED ON MODIFIED FRACTIONAL CAHN-HILLIARD EQUATION

  • CHOI, YONGHO;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.203-210
    • /
    • 2019
  • We present the three-dimensional volume reconstruction model using the modified Cahn-Hilliard equation with a fractional Laplacian. From two-dimensional cross section images such as computed tomography, magnetic resonance imaging slice data, we suggest an algorithm to reconstruct three-dimensional volume surface. By using Laplacian operator with the fractional one, the dynamics is changed to the macroscopic limit of Levy process. We initialize between the two cross section with linear interpolation and then smooth and reconstruct the surface by solving modified Cahn-Hilliard equation. We perform various numerical experiments to compare with the previous research.

Improved Surface Plasmon Resonance Sensing Sensitivity due to an Electrochemically Potential-Induced Gold Reconstruction

  • Choi, Baeck B.;Kim, Bethy;Chen, Yiqi;Jiang, Peng
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.167-172
    • /
    • 2021
  • he progressively improved sensing sensitivity (∆λSPR/∆n, nm/RIU) to detect the refractive index is observed on the SPR platform of an Au-covered epoxy gratings in an increase in potential cycling in a typical three-electrode cell. Here, a DVD-R optical disc was used as a structure template to prepare an Au-covered epoxy gratings, and the newly formed reverse track pitch structure on the epoxy substrate was used as a working electrode directly in aqueous sulfuric acid solution. It is expected that Au reconstruction by potential cycling in sulfuric acid electrolyte increases the packing density of Au atoms in the grain boundary and improves the propagation of electromagnetic waves.