• 제목/요약/키워드: surface plasmon-polaritons

검색결과 19건 처리시간 0.034초

표면 플라즈몬-폴라리톤의 외부-전반사에 의해 도파되는 나노 크기 모드의 특성 (Characteristics of Nanoscale Modes Guided by the Total External Reflection of Surface Plasmon-Polaritons)

  • 설강희;송석호
    • 한국광학회지
    • /
    • 제23권1호
    • /
    • pp.36-41
    • /
    • 2012
  • 표면 플라즈몬-폴라리톤(surface plasmon-polaritons, SPP)의 외부-전반사(total external reflection, TER) 현상은 유전체 만으로 된 경계 면에서는 일어나지 않는 SPP 만의 독특한 특성이다. 금속 면 위에 놓인 낮은 굴절률 유전체 선이 도파로 코어 역할을 하여 파장 이하의 크기를 갖는 도파모드를 형성하는 SPP-TER 도파로 구조를 제안하였다. 코어 단면적 변화에 따른 SPP-TER 모드의 전파 특성을 기존의 높은 굴절률 유전체 도파로 및 금속 도파로 구조와 비교 분석하였다. 코어의 면적이 작아짐에 따라 SPP-TER 모드의 크기가 파장보다 수십 배 작아질 수 있으면서도, 주변에 이득물질을 갖는 경우에는 기존의 도파로 구조보다도 높은 이득을 가질 수 있음을 보였다. 따라서, 제안된 SPP-TER 구조는 나노 크기의 레이저 구현에 기여하리라 기대된다.

Enhancement of the surface plasmon-polariton excitation in nanometer metal films

  • Kukushkin, Vladimir A.;Baidus, Nikoly V.
    • Advances in nano research
    • /
    • 제2권3호
    • /
    • pp.173-177
    • /
    • 2014
  • This study is aimed to the numerical modeling of the surface plasmon-polariton excitation by a layer of active (electrically pumped) quantum dots embedded in a semiconductor, covered with a metal. It is shown that this excitation becomes much more efficient if the metal has a form of a thin (with thickness of several nanometers) film. The cause of this enhancement in comparison with a thick covering metal film is the partial surface plasmon-polariton localized at the metal-semiconductor interface penetration into air. In result the real part of the metal+air half-space effective dielectric function becomes closer (in absolute value) to the real part of the semiconductor dielectric function than in the case of a thick covering metal film. This leads to approaching the point of the surface plasmon-polariton resonance (where absolute values of these parts coincide) and, therefore, the enhancement of the surface plasmon-polariton excitation. The calculations were made for a particular example of InAs quantum dot layer embedded in GaAs matrix covered with an Au film. Its results indicate that for the 10 nm Au film the rate of this excitation becomes by 2.5 times, and for the 5 nm Au film - by 6-7 times larger than in the case of a thick (40 nm or more) Au film.

Directional Radiation of Surface Plasmon Polaritons at Visible Wavelengths through a Nanohole Dimer Optical Antenna Milled in a Gold Film

  • Janipour, Mohsen;Hodjat-Kashani, Farrokh
    • Journal of the Optical Society of Korea
    • /
    • 제18권6호
    • /
    • pp.799-808
    • /
    • 2014
  • The mechanism of optical interaction of two nanoholes, milled in an opaque gold film, by means of surface plasmon polariton (SPP) propagation is investigated. The interaction depends on the polarization direction of the incident light when the nanohole pair is illuminated through uniform single antenna excitations. It is shown that by illuminating one of the nanoholes, under single antenna excitation, the other nanohole can be excited indirectly via propagated SPPs from the excited nanohole. In addition, it is found that the spectrum of electromagnetic power above the surface of the metallic film at an arbitrary point along the axis of the nanohole pair presents two resonant peaks. These peaks are due to the optical interaction between nanoholes, where the short- and long-wavelength peaks can be assigned to in-phase and antiphase interactions of magnetic dipoles relative to each nanohole, respectively. The magnetic coupled dipole approximation (MCDA) method confirms the simulation results.

10 Gbps Optical Signal Transmission via Long-Range Surface Plasmon Polariton Waveguide

  • Ju, Jung-Jin;Kim, Min-Su;Park, Sun-Tak;Kim, Jin-Tae;Park, Seung-Koo;Lee, Myung-Hyun
    • ETRI Journal
    • /
    • 제29권6호
    • /
    • pp.808-810
    • /
    • 2007
  • We demonstrate 10 Gbps optical signal transmission via long-range surface plasmon polaritons (LR-SPPs) in a very thin metal strip-guided geometry. The LR-SPP waveguide was fabricated as a 14 nm thick, 2.5 ${\mu}m$ wide, and 4 cm long gold strip embedded in a polymer and pigtailed with single-mode fibers. The total insertion loss of 16 dB was achieved at a wavelength of 1.55 ${\mu}m$ as a carrier wave. In a 10 Gbps optical signal transmission experiment, the LR-SPP waveguide exhibits an excellent eye opening and a 2.2 dB power penalty at $10^{-12}$ bit error rate. We confirm, for the first time, that LR-SPPs can efficiently transfer data signals as well as the carrier light.

  • PDF

Photonic Band Gaps for Surface Plasmon Modes in Dielectric Gratings on a Flat Metal Surface

  • Song, Seok-Ho;Yoon, Jae-Woong;Lee, Gwan-Su;Oh, Cha-Hwan;Kim, Pill-Soo
    • Journal of the Optical Society of Korea
    • /
    • 제6권3호
    • /
    • pp.76-82
    • /
    • 2002
  • For dielectric gratings on a flat metal surface, photonic band gaps created by Brags scattering of surface plasmon polaritons are observed. The observation result that directly images this gap is compared with that predicted by a numerical model based on a plane wave expansion. Consistency between the experimental and numerical results is also confirmed by comparison with the well-known calculation method of diffraction, the rigorous coupled wave analysis method.

Cooperative Spontaneous Emission from Nanocrystals to a Surface Plasmon Polariton in a Metallic Nanowire

  • Lee, Joong-Hag;Hong, Suc-Kyoung;Nam, Seog-Woo;Kim, Seog-Seong
    • Journal of the Optical Society of Korea
    • /
    • 제15권4호
    • /
    • pp.407-414
    • /
    • 2011
  • We analyze the cooperative spontaneous emission of optically excited nanocrystals into surface plasmon polaritons propagating on the surface of a cylindrical metallic nanowire. The spontaneous emission probability of the nanocrystals is obtained by perturbative expansions with and without dipole-dipole interaction among nanocrystals in order to see the cooperative effects. The spontaneous emission probability depends on the radial and axial distributions, as well as on the dipolar orientation of nanocrystals. It is shown that the spontaneous emission probability is strongly influenced by dipole-dipole interaction, axial distribution, and dipolar orientation of nanocrystals for closely spaced nanocrystals.

High System Performance with Plasmonic Waveguides and Functional Devices

  • Kwong, Wing-Ying
    • ETRI Journal
    • /
    • 제32권2호
    • /
    • pp.319-326
    • /
    • 2010
  • Photonics offers a solution to data communication between logic devices in computing systems; however, the integration of photonic components into electronic chips is rather limited due to their size incompatibility. Dimensions of photonic components are therefore being forced to be scaled down dramatically to achieve a much higher system performance. To integrate these nano-photonic components, surface plasmon-polaritons and/or energy transfer mechanisms are used to form plasmonic chips. In this paper, the operating principle of plasmonic waveguide devices is reviewed within the mid-infrared spectral region at the 2 ${\mu}m$ to 5 ${\mu}m$ range, including lossless signal propagation by introducing gain. Experimental results demonstrate that these plasmonic devices, of sizes approximately half of the operating free-space wavelengths, require less gain to achieve lossless propagation. Through optimization of device performance by means of methods such as the use of new plasmonic waveguide materials that exhibit a much lower minimal loss value, these plasmonic devices can significantly impact electronic systems used in data communications, signal processing, and sensors industries.

폴리머 크래딩을 이용한 저손실 표면플라즈몬 광도파로 개발 (Development of low-loss surface plasmon waveguides by using polymeric cladings)

  • 주정진;박선택;김민수;박승구;김진태;최중선;권용환;이명현
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2008년도 동계학술발표회 논문집
    • /
    • pp.125-126
    • /
    • 2008
  • We investigate characteristics of gold and silver metal strip waveguides based on long range surface plasmon polaritons (LRSPPs) along thin metal strips embedded in a polymer for practical applications at the wavelengths of 1.31 and 1.55 um. Guiding properties of the metal strip waveguides are theoretically and experimentally evaluated. In addition, surrounding technologies such as the development of TM-mode laser, coupling properties, as well as high-speed digital signal transporting experiments will be explained for board-to-board optical interconnections by using the LRSPP waveguides.

  • PDF

Light Coupling between Plasmonic Nanowire and Nanoparticle

  • Kim, Kyoung-Ho;No, You-Shin
    • Journal of the Korean Physical Society
    • /
    • 제73권9호
    • /
    • pp.1283-1288
    • /
    • 2018
  • In this work, we investigate polarization-dependent excitation of the propagating surface plasmon polariton (SPP) modes in gold nanowires (Au NWs) combined with gold nanoparticles (Au NPs). The light coupling from focused light to SPPs on Au NWs is investigated for different structural combinations of Au NWs with Au NPs, using full-wave finite-element numerical simulations. The results show that the excitation of SPPs changes remarkably on varying the orientation of the NP on NW or the polarization angle of the incident light. Metallic NWs combined with NPs can be applied to the polarization-resolved SPP coupling in various optical and optoelectronic devices including photonic circuits and optical sensors.

이중 금속-선 광도파로의 분산관계 (Dispersion relation of double metal-strip waveguides)

  • 송석호;주양현;원형식
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2006년도 하계학술발표회 논문집
    • /
    • pp.41-42
    • /
    • 2006
  • An idea for extension of propagation range of surface plasmon-polaritons(SPP), which are guided on metal-strip waveguides, is suggested. Slight modification in refractive indices and/or separation gaps can increase two orders of magnitude in propagation distance of SPPs. Dispersion relations of extended long-range SPP modes excited on vertically coupled SPP waveguides are discussed in detail.

  • PDF