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For dielectric gratings on a flat metal surface, photonic band gaps created by Bragg scattering
of surface plasmon polaritons are observed. The observation result that directly images this gap is
compared with that predicted by a numerical model based on a plane wave expansion. Consistency
between the experimental and numerical results is also confirmed by comparison with the well-known
calculation method of diffraction, the rigorous coupled wave analysis method.

OCIS codes : 240.6680, 240.6690.

I. INTRODUCTION

In the propagation of electromagnetic modes, it is
noted that surface modes are a useful system for ex-
amining some of the basic physics of photonic band
gaps(PBG’s) both in experiment and theory. [1,2] One
of the reasons can be pointed out that surface modes
require only a periodically modulated two-dimensional
(2-D) structure to produce an energy gap, while bulk
modes require 3-D periodic structures. Energy gaps
produced in the propagation of surface modes, espe-
cially surface plasmon polaritons (SPP’s) on metallic
2-D gratings, have been explained in an analytic model
and reported in an experiment that directly image the
gaps. {2,3] In their analytic modeling, the 2-D corru-
gated metal surface is flattened by making use of ap-
propriate coordinate transformation, and the Maxwell
equations are expressed in the new transformed coor-
dinate system. Expressions of the gap width and the
central frequency are derived for the case when first
order Bragg scattering is only considered.

In order to fully understand many physical phenom-
ena related on PBG’s, however, corrugated metallic
surfaces may not be enough to represent a general
case of PBG structures, since most of the PBG mate-
rials used in a number of applications proposed so far
are dielectric. We report in this paper on surface plas-
mon band gaps that arise for the propagation of SPP’s
through dielectric gratings on a flat metallic surface.
In Section 2 we discuss a brief background on different
concept between the two cases of the metallic grat-
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ings and the dielectric gratings. In Sec. 3, we present
a wide band gap of SPP’s observed by direct imag-
ing technique used previously [3], which arises from
periodic media of the dielectric gratings even with a
grating depth of few tens of nanometers. Such a wide
band gap is obtained from very shallow periodic struc-
ture mainly due to the large field enhancement prop-
erty of the SPP. The field enhancement is about 10
~ 100 times larger than evanescent waves for SPP
resonance. In Sec. 4, a full numerical model based on
a plane wave expansion is also developed to predict
the surface plasmon energy gaps of dielectric gratings.
Actually, the energy band gaps of a dielectric lattice
consisting of two different dielectric materials are of
the results from different mode frequencies at a given
wavevector. The different modes can be obtained by
interference between diffraction modes of Bragg scat-
tered fields. Therefore, we are able to confirm a con-
sistency between the experimental and numerical re-
sults by comparison with the well-known calculation
method of diffraction, the rigorous coupled wave anal-
ysis method. Finally, we will summarize our results in
Sec. 5.

II. BACKGROUND

The SPP’s are nonradiative TM polarized modes of
collective oscillation of free charged particles which are
propagating along the metal/dielectric interface. Be-
cause the SPP’s have wavevectors larger than those of
photons with the same energy, one way to excite the
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SPP’s is to use an attenuated total reflection (ATR)
configuration. A typical ATR device consists of a di-
electric high-index prism and a thin metal film on a
prism surface. The metal film is regarded as a tank
of free electron gas from a macroscopic point of view,
and it is sufficiently thin to allow most of the inci-
dent optical energy to penetrate through it. Above
the critical angle of internal reflection, both of the
TM- and TE-polarization components of the incident
light beam are totally reflected from the prism-metal
interface. At a certain angle after the total reflection,
on the other hand, only the incident TM-component
is completely absorbed to the interface, and then a
surface mode of the SPP is generated with the help of
the momentum-matching condition, or surface plas-
mon resonance (SPR) condition. The wave number,
ksp , at SPR is given by [4].
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It means that the component of the incident wave vec-
tor in the plane parallel to the metal layer, &, , is ex-
actly matched to the propagation vector of the surface
plasmon, kg, . In the Eq. (1), €5 , & , and €4 are
dielectric constants of the prism, the metal, and the
dielectric material above the metal film. At the SPR
condition, the surface mode reaches its maximum field
which is confined within the wavelength height in the
normal direction from the interface between the metal
and the dielectric. The confined surface field as a non-
radiative TM polarized mode of collective oscillations
of free charged particles then propagates through the
interface. Therefore the field intensity is dramatically
enhanced about 10 ~ 100 times larger than another
surface mode of evanescent fields generated from an in-
terface between two dielectric media. This large field
enhancement characteristic of the SPP’s has been ap-
plied to implementation of many optical devices, such
as light modulators [5]- [9], optical switching [10], op-
tical filters [11]- [14], polarization beam splitters [15]
and second harmonic generators [16].

One of the interesting studies to understand inter-
action of SPP’s with periodic media is of surface plas-
mon band gaps. It has been reported that SPP’s ex-
cited on a periodically corrugated metallic surface re-
veal energy band gaps that prohibit the propagation
of modes over a range of optical frequencies [1,4]. In-
hibiting excitation of surface modes by opening com-
plete band gaps [1], coupling SPP’s to radiation fields
[17], and channel guiding of SPP’s [18] had been re-
ported. Especially Barnes et al’s works showed full
surface plasmon band gaps in the visible from peri-
odically corrugated metal surfaces [1] and proposed
an analytic model for the width and the central fre-
quency of surface plasmon band gaps [2]. In their ana~
lytic modeling, a corrugated surface of metal gratings

is flattened by making use of appropriate coordinate
transformation, and then Maxwell equations are ex-
pressed in the new coordinate system. Solutions for
the surface modes that propagate on the metal grat-
ings are based on the first order Bragg scattering with
boundary conditions at the metal-air interface. The
analytic expressions for the mode frequencies at band
gap edges are of the form,
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where wy, K, d and are the mode frequency for no cor-
rugation in the metal, the magnitude of the primitive
reciprocal lattice vector, and the depth of the metallic
corrugation, respectively. They showed that the phys-
ical origin of the surface plasmon band gap would be
found from the fact that two standing wave solutions
of SPP modes take different positions with respect to
the peaks and troughs of the grating. It means that
the electromagnetic field and surface charge distribu-
tions of a nonradiative SPP mode will differ in the two
modes. We can say that there is a difference in pene-
tration depth (or, decay length) of the electromagnetic
field into the surrounding dielectric media between the
two modes; one coupled out from the surface charge
distribution which has most of its charge density on
the peaks of the corrugation and the other which has
most of its charge density on the troughs of the cor-
rugation. The former mode has the lower frequency
solution at the surface plasmon energy band gap and
the latter has the higher frequency solution.

In this paper, on the other hand, we present an-
other system to exhibit surface plasmon band gaps.
Our system consists of a dielectric grating layer on a
flat metal surface, instead of the corrugated metallic
gratings. Thus, the physical origin of the energy band
gaps in our system may differ from that in the metal-
lic grating system. As a 1-D PBG structure, consider
a dielectric grating consisting of two different dielec-
tric media with a period of a. If the condition that
ksp = w/a is satisfied there will be two standing sur-
face modes in the dielectric media. The two modes re-
sult from Bragg reflection of the electromagnetic field
in the nonradiative SPP wave, and they have different
energies. This difference arises because the electro-
magnetic fields of the two modes are concentrated in
regions of different optical permittivity.

III. EXPERIMENTAL RESULTS

We have measured a dispersion curve of the SPP’s
and a surface plasmon band gap by the direct imaging
technique {3]. Asshown in Fig. 1, the imagingl set-up
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FIG. 1. A schematic of the experimental set-up.

is similar to the arrangement of Ref. 3, except a trans-
mission grating is used instead of a reflection grating
to split the energies in one direction. A TM-polarized
and collimated white light is made incident on a hori-
zontal slit. The light is then focused through a cylin-
drical lens on a thin (52nm) silver film deposited onto
the base of a hemi-cylindrical prism. This light con-
tains photons of a range of energies and momenta.
Specific photons whose energies and momenta match
the SPP’s will be absorbed on the silver-air interface,
and the rest of the photons will be reflected from the
interface. A transmission grating is used to spread out
the reflected photons in the vertical direction, which
corresponds to wavelength spectra. Photographs of
the SPP’s dispersion curves are therefore obtained
from a color CCD camera.

First we have measured a typical dispersion relation
of the SPP’s by using the imagine set-up. Fig. 2 is
a photograph of the dispersion curve of SPP’s which
propagate on the flat silver surface. The dark arc in
the photograph shows us clearly a dispersion relation
of the SPP’s. The horizontal axis represents the in-
cidence angles (momenta) of the white light and the
vertical axis is related to the wavelength (energy) of
the light. The A and B points marked on the vertical

FIG. 2. A photograph showing the dispersion curve of
SPP’s for silver and air interface.

axis represent the wavelengths of 633nm and 460nm
for calibration. We used two narrow (2nm) band-pass
filters for the calibration, and they will give us im-
portant landmarks to measure central frequencies and
widths of the surface plasmon band gaps in later on.

As one of the dielectric PBG structures, now con-
sider a 1-D grating layer constructed on the flat sur-
face of the thin silver film. Fig. 3(a) shows a clear
energy gap near the top of the reddish region. In this
band gap measurement, we have used a photoresist
holographic linear grating, with a period of 256nm
and a modulation depth of 80nm. The boxes shown
in Fig. 3(b) reveal the dispersion relations calculated
by the rigorous coupled wave analysis (RCWA). By
comparing the photograph with the calculated curves,
we are able to find the width of the surface plasmon
band gap (Aw = wy —w_ ) to be 0.016 times the
plasma frequency (wp = 1.274 x 10'6/s ) of the silver
film. We will not go further here in detail about the
calculation process of the RCWA since one can find
many references on the RCWA in other places [20].
However, physics related to the SPP’s band gap for
the dielectric PBG structure will be discussed further
in Sec. 4, where a more intuitive numerical model to
calculate the SPP’s band gaps is introduced.

It should be noted that in Fig. 3 the dispersion
curves showing the band gap have a slope much flatter
than the slope shown in Fig. 2. Lowering cut-off fre-
quency of the SPP as the effective dielectric constant
of the dielectric layer increases makes the slop of flat-
ter. If there is no dielectric grating layer on the silver
film surface, the cut-off frequency would be wp/ V2.
But, with the dielectric layer which has an effective
dielectric constant, €4 which is larger than one, the
cut-off frequency is reduced to be wp/v/1+e4. We
can also approximately imagine the origin of the en-
ergy gap before doing a rigorous calculation as follow.
Mode frequency of SPP’s is given by [4]
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FIG. 3. (a) A photograph of the SPP’s band structure
and (b) the ROWA result when w, = 1.274 x 10'°Hz).



Photonic Band Gaps for Surface Plasmon Modes in Dielectric - - - — Jaewoong Yoon et al. 79
- 1/2
2 2 2
Wp 1, [cksp 1 (cks,,> 4 (ck3p>
= P Bl ¥ (eic”/ 20 NN 14 (14 )| =Zee Bl i) 4 3
w(kﬂp) \/2- 1+(1+5d)(wp ) { +( +5d) Wy +5d Wy ( )

where ks is the wave number defined in Eq. (1). As-
sume that £; and €2 are the dielectric constants of the
two alternative dielectric media in the grating layer
with a period of a. There will be two different standing
waves in the dielectric media, which are generated by
interference between the SPP’s suffering from Bragg
reflection. Most of the electromagnetic field distribu-
tion may be concentrated into either one of the two
dielectric media for the respective one of the standing
waves. Therefore, there will be two different mode fre-
quencies of wy and wy which can be determined from
the Eq. (3) for the cases when ¢4 = ¢; and ¢4 = &3,
respectively. The difference in the mode frequencies
implies, in consequence, a reason why the energy gap
of SPP’s occurs in dielectric PBG structures on a flat
metal surface.

IV. SPP’S BAND GAP CALCULATION BASED
ON PLANE WAVE EXPANSION METHOD

1. Numerical modeling by use of the plane wave
expansion method

A numerical model we develop here is mainly based
on the plane wave expansion method (PWEM), which
is widely used in the band gap calculation of dielectric
PBG structures [19,21]. The reason why we are able
to use the same method to calculate the band gaps of
SPP’s is that a nonradiative SPP mode consists of an
evanescent electromagnetic field oscillation coupled to
an oscillating surface charge distribution. In our case
for the propagation of SPP’s through dielectric grat-
ings on a flat metallic surface, the evanescent electro-
magnetic field propagates on the flat metallic surface
with a strong perturbation from the dielectric grating
structures. To calculate surface plasmon band gaps is,
therefore, the same work as to do band gaps for the
evanescent field by expanding it into many plane wave
components.

The problem to calculate band structures of SPP’s
may start with an eigenvalue problem induced from
the two curl expressions of the Maxwell equations,

Y x E%V X hoy(&) = (%)%(f), @)
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-

FIG. 4. A system for band structure calculation. Thick-
ness of the metal and the dielectric lattice is assumed to
be semi-infinite in the numerical model.

H,(%,t) = Re{h.,(&)e""“"}, (5)

where H,, is the magnetic field of a monochromatic
EM wave with the frequency of wand its complex am-
plitude function of A,,. &(Z) is a dielectric function of
the dielectric layer. Choosing the magnetic field for
wave equations makes the problem simple since the
electric field is not Hermitian in the dielectric lattice
structure [19]. Now consider an optical system con-
sisting of a dielectric lattice in the region of z > 0 and
a flat metal in 2z < 0 as shown in Fig. 4. It is assumed
that the metal and the dielectric have semi-infinite
thickness. The dielectric function can be represented
in the form of

@ ={ 2P 201, ®

%

where, ep(Z) = &5 + Y (e — €5)Basis(Z — R,),
- 1 (in the basis)
Basis(7) = {0 (in the substrate)} , the lat-
tice translation vector of R:, =
lnt,lno @ integer
d1, dy : primitive lattice vector

lnidl + lpaaa

, and gpr = 1 —

;é (wp : plasma frequency of the metal). The peri-
odic £p in Eq. (6) can be further expanded with
harmonics of plane waves whose wavevectors are re-
ciprocal lattice vectors given by Gn = wvnibi +
Vnaba (ana Vno : integer),

1 S
/ dx dyep(Z)e™Cn® (7
unit cell
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FIG. 5. Relation between polarization unit vector,qgﬁ s
and wavevector of nth plane wave component, %,

The primitive reciprocal lattice vectors are defined
by b = 27ra—“—§%5; and by = 27ra—zxx7“1—2 The calcu-
lation process to solve the elgenvalue problems of Eq.
(3) can be completed by the following procedures: Ex-
panding the complex amplitude function, hz,, with a
set of plane waves, {€**»"%}; solving the Eq. (4) for
the metal region with £,s; solving the Eq. (4) for the
dielectric lattice region with ep in Eq. (7); apply-
ing boundary conditions at the interface between the
metal and dielectric; finally solving coupled matrix
equations. We assume that the complex amplitude
function is a Bloch-Floquet mode, because the system
has a discrete translational symmetry along in  — y

plane, and that V- h:, = 0, because there are no mag-
netic materials. The for a TM-polarized evanescent
field is expressed as

Ewyf?(f) = [Z hz’i(Z)gﬁeiG:t'i'k%i ®

where €, and q?fl are unit vectors of the z-axis and
the polarization direction as shown in Fig. 5, and ka
Bloch wavevector which is-placed in z —y plane. Now,
the problem is to decide the amplitudes of the plane

waves h?F(z) and the eigenvalue w/c. In the metal
region, Eq. (4) gives us the solutions of

E (.7,‘ Y,z < O Zhw k(o —knz wz,,z¢k] z(k+G’,,) :c

(9)

where

Kn = [% {AZ(E,w,n) + \/A4(E,w,n) + B4(w)}] v
B*(w)

[2 {Az(/_c',w,n) + \/A4(1}',w,n) + B4(w)}] /2

and { A%(E,w,n) = |k + Gp|? — e,k2 }
B2 (UJ) = Eikg
In the dielectric lattice region, Eq. (4) does not give
us an explicit solution since the plane waves are cou-
pled to each other. But it can be expressed in matrix
form as follows;

Oy =

>l + G IR+ Gl (2) — cos g ()] = () hak(2) (10)

where 7, is Fourier transform of the 1 / (&) with the
spatial frequency of G, — G, and ¢nm is the angle
between ¢n and ¢m. Each of the solutions for hw, 2 (&)
in the metal, Eq. (9), and the dielectric lattice, Eq.
(10), must satisfy two boundary conditions given from
the Maxwell equations as follows;

(2% (0)metar = [ (0) dietecric, (11)

1.d
[dZ 0)]metal Z Tlnm COS ¢

(12)
Finally, we can obtain two coupled matrix equations

by applying boundary conditions of Eqs. (11) and (12)
to Egs. (9) and (10),

hk u (0)]d1electnc-

On +iKn o\, F
=R (0), (13)

Z ﬁnm COos ¢ﬁmﬁmh‘;}r{k(0) =

SuknsFo = (2) ko, )

where, LYK = finml[|k + Gollk + Gonl — cos ¢E,,52]

At a fixed frequency, from the Eq. (13) we first
determine the values of {8,} which are independent
on {h%"*(0)}, and then we find the values of & in the
first Brillouin zone by solving the Eq. (14). Finally,
the dispersion relation between momentum of k and
frequency of w for SPP’s can be obtained.
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FIG. 6. SPP’s band structures obtained by PWM(-)
and RCWA(O), when a = 1.5Xp.

2. Comparison of the SPP’s band structures
calculated by PWEM with RCWA

In fact, the PWEM-based numerical model de-
scribed above assumed that the metal and the dielec-
tric grating have semi-infinite thickness as shown in
Eq. (6). However, the property that the SPP’s prop-
agate only on the interface between the metal and di-
electric makes it possible to estimate intuitively char-
acteristics of the SPP’s band structure without loss of
generality. Therefore, by keeping the assumption of
the semi-infinite thickness, we will compare two band
structures obtained from the PWEM-based model and
the RCWA in accordance with Fig. 6, and will discuss
the dependence of the central frequency and width of
the SPP’s band gaps on lattice constant in Fig. 7.

In Fig. 6, a SPP’s band structure (solid curves) cal-
culated by the PWEM-based model is presented. The
horizontal axis is normalized by 27 /a, but the vertical
axis of frequency by wp. The boxes between two dis-
persion relations (dashed lines) of the air curve and the
dielectric curve represent the results calculated by the
RCWA near the energy band gap. In the calculation,
we assumned that a 1-D dielectric grating consists of air
and dielectric material (¢p = 2.56). The silver metal
film having the plasma frequency of w, = 1.274 x 10%
Hz is used again. The dielectric filling ratio is 0.5 and
the lattice constant, a, is 256 nm {(a = 1.5\, where
Ap = 2mc/wp). Both the results showing a SPP band
gap ranging from the lower band edge of 0.188w, to
the upper band edge of 0.245w, are very consistent
with each other. The SPP band gap in this case cor-
responds to a wavelength range from 600 nm to 783
nm. It is noted that the lower band edge shifts more
closely to the dielectric curve than the shift of the up-

ux .
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2144
0:32 -
0.1 o

LY, 2

FIG. 7. Depéndence of the central frequency in (a) and
the width in (b) of the SPP’s on lattice constant, a.

per band edge to the air curve. This implies the origin
of the SPP band gap in a dielectric lattice: The mode
of a standing wave at the lower (upper) band edge has
its most field concentrated into the dielectric (air) re-
gion, and TM-polarized EM waves of the SPP’s prefer
penetrating into the dielectric region.

Fig. 7 shows dependence of the SPP’s band struc-
ture on the lattice constant. Variation of the normal-
ized central frequency, wp/wp, with the normalized lat-
tice constant, a/),, is shown in Fig. 7(a). The dashed
curve in this figure is of a bulk light-wave propagat-
ing on the semi-infinite dielectric lattice. When the
lattice constant a becomes smaller, the central fre-
quency of the SPP’s approaches its maximum value of
the cut-off frequency, wp/ V2 , while that of the bulk
wave diverges to infinite. The band gap width of the
SPP’s shown in Fig. 7(b) has also its maximum when
a = 0.7), without diverging like that of the bulk wave.
It is found that, therefore, the SPP band structure is
no more than scalable in the lattice constant. The
cut-off frequency inhibits increase of the SPP’s both
in the central frequency and the width. These prop-
erties of the SPP’s band structure are coincident with
the results of Ref. 22.
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V. CONCLUSION

We have observed experimentally the photonic band
gap in dispersion curves of SPPs excited at a 1-D di-
electric lattice structure on a flat metal surface. Even
though modulation depth and refractive index of the
dielectric lattice are very small, a clear and wide band
structure has been measured by a direct imaging tech-
nique. The result of direct imaging has been com-
pletely overlapped with the calculation result of the
RCWA. We have also presented a numerical method
based on plane wave expansion in order to understand
intuitively the properties of the SPP’s band struc-
tures, such as dependence of the central frequency and
the width of the SPP’s band gap on lattice constant.
We have found that the photonic band structure of
SPP’s is no more than scalable in the lattice constant,
which would be quite different from the scalability of
photonic band structures for bulk light-waves. It is
expected that there are many interesting subjects re-
lated to interaction between SPP’s and dielectric lat-
tices. Some of them are designing SPP dispersion by
use of dielectric lattice at a fixed frequency range, ana-
lyzing effects of large enhancement of density of state
at a band edge, obtaining complete SPP band gaps
from 2-D dielectric lattices, enhancing nonlinear effect
on SPR, applying SPP resonance on magnetic materi-
als, coupling SPP fields to radiation fields, and so on.
They are future works of our SPP related research.

ACKNOWLEDGEMENT
This work was supported by the 1999 grant of
Hanyang University.

*Corresponding author : shsong@hanyang.ac.kr.

REFERENCES

[1] S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys.
Rev. Lett. 77, 2670 (1996).

[2] W. L. Barnes, J. D. Preist, and J. R. Sambles, Phys.
Rev. B 54, 6227 (1996).

[3] S. C. Kitson, W. L. Barnes, G. W. Bradberry, and J.
R. Sambles, J. Appl. Phys. 79, 7383 (1996).

[4] H. Reather, Surface plasmons on smooth and rough
surfaces and on gratings (Springer-Verlag, 1988) chep-
terl.

[5] M. E. Caldwell and E. M. Yeatman, Appl. Opt. 31,
3880 (1992).

[6] T. Okamoto, T. Kamiyama, and I. Yamaguchi, Opt.
Lett. 18, 1570 (1993).

[7] A. Yacoubian and T. M. Aye, Appl. Opt. 32, 3073
(1993).

[8] B. Jung, S. Lee, and K. Kuhn, Appl. Opt. 34, 946
(1995).

[9] M. Rosenbluh, and V. Sandomirsky, Appl. Phys. Lett.
68, 882 (1996).

[10] K. Sasaki and T. Nagamura, Appl. Phys. Lett. 71,
434 (1997).

[11] Y. Wang, Appl. Phys. Lett. 67, 2759 (1995).

[12] P. J. Kajenski, Opt. Eng. 36, 263 (1997).

[13] P. J. Kajenski, Opt. Eng. 36, 1537 (1997).

[14] J. Homola, R. Slavik, and J. Ctyroky, Opt. Lett. 22,
1403 (1997).

[15] S. Park, Grating-assisted emission of surface plasma
wave (PhD Thesis, Hanyang Univ., 2000).

[16] H. J. Simon, D. E. Mitchell, J. G. Watson, Phys. Rev.
Lett. 33, 1531 (1974).

[17] P. T. Worthing, W. L. Barnes, Appl. Phys. Lett. 79,
3035 (2001).

[18] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W.
Skovogaard, and J. M. Hvam, Phys. Rev. Lett. 86,
3008 (2001).

[19] J. D. Joannopoulos, R. D. Meade, and N. J. Winn,
Photonic Crystals: Modeling the flow of light (Prince-
ton Univ. Press, 1995) chepter 2.

[20] M. G. Moharam and T. K. Gaylord, J. Opt. Soc. Am.
72, 1385 (1982).

[21] A. A. Maradudin, V. Kuzmiak, and A. R. McGurn,
. Photonic band structures of systems with components
characterized by frequency dependent dielectric func-
tions (Kluwer Academic Publisher, Photonic Band
Gap Materials, 1996) pp. 271-318.

[22] V. M. Agranovich and D. L. Mills, Surface Polaritons
{(North-Holland Publishing Company, 1982).



