DOI QR코드

DOI QR Code

Cooperative Spontaneous Emission from Nanocrystals to a Surface Plasmon Polariton in a Metallic Nanowire

  • Lee, Joong-Hag (Department of Display and Semiconductor Physics, Korea University) ;
  • Hong, Suc-Kyoung (Department of Display and Semiconductor Physics, Korea University) ;
  • Nam, Seog-Woo (Department of Display and Semiconductor Physics, Korea University) ;
  • Kim, Seog-Seong (Department of Physics, Chungbuk National University)
  • Received : 2011.08.04
  • Accepted : 2011.09.19
  • Published : 2011.12.25

Abstract

We analyze the cooperative spontaneous emission of optically excited nanocrystals into surface plasmon polaritons propagating on the surface of a cylindrical metallic nanowire. The spontaneous emission probability of the nanocrystals is obtained by perturbative expansions with and without dipole-dipole interaction among nanocrystals in order to see the cooperative effects. The spontaneous emission probability depends on the radial and axial distributions, as well as on the dipolar orientation of nanocrystals. It is shown that the spontaneous emission probability is strongly influenced by dipole-dipole interaction, axial distribution, and dipolar orientation of nanocrystals for closely spaced nanocrystals.

Keywords

References

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, USA, 2007), Chapter 1.
  2. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, "Plasmonic nanostructures: artificial molecules," Acc. Chem. Res. 40, 53-62 (2007). https://doi.org/10.1021/ar0401045
  3. A. I. Fernandez-Dominguez, L. Martin-Moreno, F. J. Garcia-Vidal, S. R. Andrews, and S. A. Maier, "Spoof surface plasmon polariton modes propagating along periodically corrugated wires," IEEE J. Quantum Electron. 14, 1515-1521 (2008). https://doi.org/10.1109/JSTQE.2008.918107
  4. J. Yang, Q. Cao, and C. Zhou, "Analytical recurrence formula for the zeroth-order metal wire plasmon of terahertz waves," J. Opt. Soc. Am. A 27, 1608-1612 (2010). https://doi.org/10.1364/JOSAA.27.001608
  5. H. Wei, D. Ratchford, X. Li, H. Xu, and C.-K. Shih, "Propagating surface plasmon induced photon emission from quantum dots," Nano Lett. 9, 4168-4171 (2009). https://doi.org/10.1021/nl9023897
  6. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, "Silver nanowires as surface plasmon resonators," Phys. Rev. Lett. 95, 257403 (2005). https://doi.org/10.1103/PhysRevLett.95.257403
  7. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, "Strong coupling of single emitters to surface plasmons," Phys. Rev. B 76, 035420 (2007). https://doi.org/10.1103/PhysRevB.76.035420
  8. M.-T. Cheng, Y.-Q. Luo, Y.-Y. Song, and G.-X. Zhao, "Plasmonic waveguides mediated energy transfer between two distant quantum dots," J. Mod. Opt. 57, 2177-2181 (2010). https://doi.org/10.1080/09500340.2010.532573
  9. F. L. Kien, S. D. Gupta, K. P. Nayak, and K. Hakuta, "Nanofiber-mediated radiative transfer between two distant atoms," Phys. Rev. B 72, 063815 (2005). https://doi.org/10.1103/PhysRevA.72.063815
  10. D. E. Chang, A. S. Sorensen, E. A. Demler, and M. D. Lukin, "A single-photon transistor using nanoscale surface plasmons," Nat. Phys. 3, 807-812 (2007). https://doi.org/10.1038/nphys708
  11. Y. N. Chen, G. Y. Chen, D. S. Chuu, and T. Brandes, "Quantum-dot exciton dynamics with a surface plasmon: band-edge quantum optics," Phys. Rev. A 79, 033815 (2009). https://doi.org/10.1103/PhysRevA.79.033815
  12. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, "Generation of single optical plasmons in metallic nanowires coupled to quantum dots," Nature 450, 402-406 (2007). https://doi.org/10.1038/nature06230
  13. G.-Y. Chen, Y.-N. Chen, and D.-S. Chuu, "Spontaneous emission of quantum dot excitons into surface plasmons in a nanowire," Opt. Lett. 33, 2212-2214 (2008). https://doi.org/10.1364/OL.33.002212
  14. I. D. Rukhlenko, D. Handapangoda, M. Premaratne, A. V. Fedorov, A. V. Baranov, and C. Jagadish, "Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: beyond the dipole approximation," Opt. Express 17, 17570-17581 (2009). https://doi.org/10.1364/OE.17.017570
  15. D. Witthaut and A. S. Sorensen, "Photon scattering by a three-level emitter in a one-dimensional waveguide," New J. Phys. 12, 043052 (2010). https://doi.org/10.1088/1367-2630/12/4/043052
  16. D. Y. Lei, A. Aubry, S. A. Maier, and J. B. Pendry, "Broadband nano-focusing of light using kissing nanowires," New J. Phys. 12, 093030 (2010). https://doi.org/10.1088/1367-2630/12/9/093030
  17. D. M. O'Carroll, C. E. Hofmann, and H. A. Atwater, "Conjugated polymer/metal nanowire heterostructure plasmonic antennas," Adv. Mater. 22, 1223-1227 (2010). https://doi.org/10.1002/adma.200902024
  18. S. John and T. Quang, "Spontaneous emission near the edge of a photonic band gap," Phys. Rev. A 50, 1764-1769 (1994). https://doi.org/10.1103/PhysRevA.50.1764
  19. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, USA, 1941), Chapter 9.
  20. C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, "Surface polaritons in a circularly cylindrical interface: surface plasmons," Phys. Rev. B 10, 3038-3051 (1974). https://doi.org/10.1103/PhysRevB.10.3038
  21. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, "Plasmon dispersion relation of Au and Ag nanowires," Phys. Rev. B 68, 155427 (2003). https://doi.org/10.1103/PhysRevB.68.155427
  22. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, "Direct observation of plasmonic modes in Au nanowires using high-resolution cathodoluminescence spectroscopy," Nano Lett. 9, 2843-2846 (2007).
  23. M. A. Schmidt and P. St. J. Russell, "Long-range spiralling surface plasmon modes on metallic nanowires," Opt. Express 16, 13617-13623 (2008). https://doi.org/10.1364/OE.16.013617
  24. A. W. Sanders, D. A. Routenberg, B. J. Wiley, Y. Xia, E. R. Dufresne, and M. A. Reed, "Observation of plasmon propagation, redirection, and fan-out in silver nanowires," Nano Lett. 6, 1822-1826 (2006). https://doi.org/10.1021/nl052471v
  25. S.-K. Hong, S. W. Nam, and K.-H. Yeon, "Coherent exciton states of excitonic nanocrystal-molecules," Phys. Rev. B 76, 115330 (2007). https://doi.org/10.1103/PhysRevB.76.115330

Cited by

  1. Polarization dependent transmission through a sub-wavelength hexagonal aperture surrounded by segmented polygonal grooves vol.21, pp.26, 2013, https://doi.org/10.1364/OE.21.032668