• Title/Summary/Keyword: surface motor

Search Result 884, Processing Time 0.039 seconds

Characteristics Analysis of Surface Permanent Magnet Linear Synchronous Motor by Finite Element Method (유한 요소법을 이용한 표면 영구자석형 선형 동기전동기의 특성 해석)

  • Rhyu, Se-Hyun;Kwon, Byung-Il;Woo, Kyung-Il;Park, Seung-Chan;Kim, Chang-Eob;Im, Tae-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.322-324
    • /
    • 1998
  • This paper describes the characteristics analysis of surface permanent magnet linear synchronous motor with conductive sheet secondary using time-stepped finite element method. The detent force, normal force, back-emf and dynamic characteristics as speed, thrust and current are described.

  • PDF

Shape Optimization for Interior Permanent Magnet Motor based on Hybrid Algorithm

  • Yim, Woo-Gyong;An, Kwang-Ok;Seo, Jang-Ho;Kim, Min-Jae;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-68
    • /
    • 2012
  • In this paper, a design method for minimizing the cogging torque of an Interior Permanent Magnet Motor (IPM) is proposed based on a hybrid algorithm. The suggested optimization algorithm is based on a combination of the Response Surface Method (RSM) and Simplex Method. The results show that the proposed method provides improved characteristics compared to the conventional methods, such as a shorter calculation time and the acquisition of a more correct solution.

Model Parameter Correction Algorithm for Predictive Current Control of SMPMSM

  • Li, Yonggui;Wang, Shuang;Ji, Hua;Shi, Jian;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.1004-1011
    • /
    • 2016
  • The inaccurate model parameters in the predictive current control of surface-mounted permanent magnet synchronous motor (SMPMSM) affect the current dynamic response and steady-state error. This paper presents a model parameter correction algorithm based on the relationship between the errors of model parameters and the static errors of dq-axis current. In this correction algorithm, the errors of inductance and flux are corrected in two steps. Resistance is ignored. First, the proportional relations between inductance and d-axis static current errors are utilized to correct the error of model inductance. Second, the flux is corrected by utilizing the proportional relations between flux and q-axis static current errors under the condition that inductance is corrected. An experimental study with a 100 W SMPMSM is performed to validate the proposed algorithm.

Optimization of BLDC Motor for Reduction of Cogging Torque Using Response Surface Methodology (반응표면방법론에 의한 BLDC 전동기의 코깅토크저감을 위한 최적화)

  • Kim, Young-Kyoun;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.647-649
    • /
    • 2000
  • This paper presents a optimization procedure by using Response Surface Methodology(RSM) to determine design Parameters for reducing cogging torque in BLDC motor of Electric Power Steering (EPS). RSM is achieved through using the experiment design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of these parameters. Moreover, Sequential Quadratic Problem (SQP) method is used to solve the resulting of constrained nonlinear optimization problem.

  • PDF

The Maximum Thrust Design of Permanent Magnet Linear Synchronous Motor Using Surface Harmonic Method considering slot effect (슬롯영향이 고려된 공간고조파법에 의한 PMLSM의 출력 최대화 설계)

  • Lee, Dong-Yeup;Zhou, Jian-Pei;Huang, Rui;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.37-39
    • /
    • 2005
  • This paper is proposed maximum thrust design of slotted Permanent Magnet Linear Synchrous Motor (PMLSM) using surface harmonic method considering slot effect. The genetic algorithm is used for optimization. The objective functions are the maximum thrust and the minimum detent force. This time, design parameters are set as PM width, PM height and slot width.

  • PDF

Optimal Design of Permanent Magnet Linear Synchronous Motor(PMLSM) Considering Multiple Response by Response Surface Methodology(RSM) (영구자석 선형 동기전동기(PMLSM)의 반응표면법(RSM)을 이용한 다중 반응 최적설계)

  • Kim Sung-Il;Nam Hyuk;Kim Young-Kyoun;Hong Jung-Pyo;Cho Han-Ik
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1097-1099
    • /
    • 2004
  • This paper deals with the optimal design of a slotless type of permanent magnet linear synchronous motor (PMLSM). Response surface methodology, one of the optimization methods, is used to consider multiple response of the PMLSM. That is, it is applied to obtain more average thrust and less thrust ripple than prototype PMLSM. To analyze quickly, characteristic analysis of the PMLSM is performed by space harmonic method and final results of optimized PMLSM are compare with those of prototype PMLSM through finite element analysis.

  • PDF

Prediction of Detent Force on Linear Synchronous Motor by means of Moving Least Square Method (이동최소자승법을 이용한 선형동기전동기의 디텐트력 특성 예측)

  • Kim, Young-Kyoun;Kim, Sung-Il;Kwon, Soon-O;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.994-996
    • /
    • 2003
  • The Response Surface Methodology is frequently used for building an approximation model. However, its approximation errors often occur in engineering problem, because of the use of the Least Square Method. Therefore, this paper introduces the Moving Least Square Method to obtain the more accurate Response Surface Model, and then the detent force of a Permanent Magnet Linear Synchronous Motor is applied to verify the accuracy of the introduced method.

  • PDF

Model-free Deadbeat Predictive Current Control of a Surface-mounted Permanent Magnet Synchronous Motor Drive System

  • Zhou, Yanan;Li, Hongmei;Zhang, Hengguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.103-115
    • /
    • 2018
  • Parametric uncertainties and inverter nonlinearity exist in the permanent magnet synchronous motor (PMSM) drive system of electrical vehicles, which may lead to performance degradation or failure, and eventually threaten reliable operation. Therefore, a model-free deadbeat predictive current controller (MFDPCC) for PMSM drive systems is proposed in this study. The data-driven ultra-local model of a surface-mounted PMSM (SMPMSM) drive system that consists of parametric uncertainties and inverter nonlinearity is first established through the input and output data of a SMPMSM drive system. Subsequently, MFDPCC is designed. The performance comparisons and analyses of the proposed MFDPCC, the conventional proportional-integral controller, and the model-based deadbeat predictive current controller for SMPMSM drive systems are implemented via system simulation and experimental tests. Results show the effectiveness and technical advantages of the proposed MFDPCC.

Rotor & Stator Design on Torque Ripple Reduction for a Synchronous Reluctance Motor with Concentrated Winding using Response Surface Methodology (반응표면법을 이용한 집중권선 동기 릴럭턴스 전동기의 토크 리플 저감에 관한 회전자 및 고정자 설계)

  • Choi, Yun-Chul;Kim, Hong-Seok;Lee, Min-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.860-861
    • /
    • 2007
  • This paper deals with optimum design criteria to minimize torque ripple of concentrated winding Synchronous Reluctance Motor (SynRM) using Response Surface Methodology (RSM). The feasibility of using RSM with the finite element method(FEM) in practical engineering problem is investigated with computational examples and comparison between the fitted response and the results obtained from an analytical solution according to the design variables of stator and rotor in concentrated winding SynRM (6slot).

  • PDF

Effects of Surface Roughness on the Performance of a Gas Foil Thrust Bearing (표면 거칠기가 가스 포일 스러스트 베어링의 성능에 미치는 영향)

  • Sung Ho Hwnag;Dae Yeon Kim;Tae Ho Kim
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.81-85
    • /
    • 2023
  • This study presents an experimental investigation of the effects of surface roughness on gas foil thrust bearing (GFTB) performance. A high-speed motor with the maximum speed of 80 krpm rotates a thrust runner and a pneumatic cylinder applies static loads to the test GFTB. When the motor speed increases and reaches a specific speed at which a hydrodynamic film pressure generated within the gap between the thrust runner and test GFTB is enough to support the applied static load, the thrust runner lifts off from the test GFTB and the friction mechanism changes from the boundary lubrication to the hydrodynamic lubrication. The experiment shows a series of lift-off test and load-carrying capacity test for two thrust runners with different surface roughnesses. For a constant static load of 15 N, thrust runner A with its lower surface roughness exhibits a higher start-up torque but lower lift-off torque than thrust runner B with a higher surface roughness. The load capacity test at a rotor speed of 60 krpm reveals that runner A results in a higher maximum load capacity than runner B. Runner A also shows a lower drag torque, friction coefficient, and bearing temperature than runner B at constant static loads. The results imply that maintaining a consistent surface roughness for a thrust runner may improve its static GFTB performance.