• Title/Summary/Keyword: surface methodology

Search Result 1,972, Processing Time 0.028 seconds

A Study on Extraction of Croplands Located nearby Coastal Areas Using High-Resolution Satellite Imagery and LiDAR Data (고해상도 위성영상과 LiDAR 자료를 활용한 해안지역에 인접한 농경지 추출에 관한 연구)

  • Choung, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.1
    • /
    • pp.170-181
    • /
    • 2015
  • A research on extracting croplands located nearby coastal areas using the spatial information data sets is the important task for managing the agricultural products in coastal areas. This research aims to extract the various croplands(croplands on mountains and croplands on plain areas) located nearby coastal areas using the KOMPSAT-2 imagery, the high-resolution satellite imagery, and the airborne topographic LiDAR(Light Detection And Ranging) data acquired in coastal areas of Uljin, Korea. Firstly, the NDVI(Normalized Difference Vegetation Index) imagery is generated from the KOMPSAT-2 imagery, and the vegetation areas are extracted from the NDVI imagery by using the appropriate threshold. Then, the DSM(Digital Surface Model) and DEM(Digital Elevation Model) are generated from the LiDAR data by using interpolation method, and the CHM(Canopy Height Model) is generated using the differences of the pixel values of the DSM and DEM. Then the plain areas are extracted from the CHM by using the appropriate threshold. The low slope areas are also extracted from the slope map generated using the pixel values of the DEM. Finally, the areas of intersection of the vegetation areas, the plain areas and the low slope areas are extracted with the areas higher than the threshold and they are defined as the croplands located nearby coastal areas. The statistical results show that 85% of the croplands on plain areas and 15% of the croplands on mountains located nearby coastal areas are extracted by using the proposed methodology.

Prediction of Optimal Extraction Conditions in Microwave-Assisted Process for Antioxidant-Related Components from Thymus quinquecostatus (Microwave-Assisted Process에 의한 섬백리향의 항산화 관련 성분의 최적 추출조건 예측)

  • Kwon Young-ju;Noh Jung-eun;Lee Jung-eun;Lee Sung-Ho;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.4
    • /
    • pp.344-349
    • /
    • 2005
  • Microwave-assisted process (MAP) was applied to extract antioxidant-related components from Thymus quinquecostatus var. japonica Hara. Microwave power(2,450 MHz, $0{\sim}160$ W) and extraction time($1{\sim}5\;min$) were used as independent variables($X_i$) for central composite design to yield 10 different extraction conditions. Response surface methodology was applied to predict optimum extraction conditions for dependent variables of extracts, such as total yield, total phenolics, flavonoid, and electron donation ability depending on different powers and extraction times of MAP. Determination coefficients($R^2$) of regression equations for dependent variables were higher than 0.93 excluding that of total phenolics, and microwave power was predicted more influential than extraction time in MAP (p<0.05). The optimal extraction time for each dependent variable was ranged from 3.36 to 4.97 min, but microwave power showed wide ranges depending on variables. The superimposed contour maps for maximized dependent variables illustrated extraction conditions of 64 to 100 W in microwave power and 2.9 to 4.0 min in extraction time.

Optimization of Extraction Conditions for Mate (Ilex paraguarensis) Ethanolic Extracts (Mate (Ilex paraguarensis) 에탄올 추출물의 추출조건 최적화)

  • Yang, Su-Jin;Youn, Kwang-Sup;No, Hong-Kyoon;Lee, Shin-Ho;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.18 no.3
    • /
    • pp.319-327
    • /
    • 2011
  • This study was conducted to monitor the quality characteristics of mate (Ilex paraguarensis) ethanolic extracts via the response surface methodology. In the extraction conditions that were based on the central composite design with variations in the ethanol concentration (0-100%), extraction temperature($35-95^{\circ}C$), and the ratio of the solvent to the sample (10~30 mL/g). The extraction yield and total polyphenol content improved with the increase in the ethanol concentration than in the extraction temperature. The caffeic acid content increased with the decrease in the solvent ratio. The coefficients of determinations ($R^2$) were 0.8842 (p<0.05), 0.8729 (p<0.05), and 0.9205 (p<0.05) in terms of the electron donating ability, nitrite scavenging effect (pH 3.0), and SOD-like ability, respectively. The estimated conditions for the maximized extraction, including in terms of the yield, total polyphenol content, caffeic acid content, and electron donating ability, were a 21-48% ethanol concentration, a $76.4^{\circ}C$ extraction temperature, and 10-14mL/g solvent-to-sample ratio.

Optimization of the Preparation Conditions and Quality Characteristics of Sweet Pumpkin-Doenjang Sauce (단호박된장소스 제조조건의 최적화 및 품질 특성)

  • Chang, Kyung-Ho;Cho, Kyung-Hoon;Kang, Min-Kyung
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.492-500
    • /
    • 2012
  • This study was conducted to develop a sauce prepared with sweet pumpkin and Korea Doenjang. The optimum conditions for manufacturing sweet pumpkin-doenjang sauce were investigated using the response surface methodology, based on the central composition design. The amount of stock added, the thickening agent, and doenjang were used as the independent variables, and the sensory characteristics (taste, flavor, color, and overall acceptability) were used as the dependent variables to evaluate the optimum conditions for the preparation of the sauce. The optimum conditions for the maximized-responses variables in the preparation of the sauce were 448.5 g of sweet pumpkin stock, 331.5 g of the thickening agent, and 20.0 g of doenjang. The quality characteristics of sweet pumpkin-doenjang sauce that was manufactured at optimum conditions were as follow: 89.55% moisture content, 0.70% crude protein, 0.10% crude lipids, and 0.71% crude ash. The pH of the sauce was 5.96; total acidity, 0.08%; and soluble solids, 6.80$^{\circ}Brix$. The total polyphenol content of the sauce was 5.70 mg/L. The electron-donating ability and reducing power of the sauce were, 14.24% and 1.64 OD, respectively.

Monitoring on Alcohol Fermentation Properties of Apple Juice for Apple Vinegar (사과식초 제조를 위한 사과주스의 알코올발효 특성 모니터링)

  • Shin, Eun-Jeong;Kang, Bok-Hee;Lee, Sang-Han;Lee, Dong-Sun;Hur, Sang-Sun;Shin, Kee-Sun;Ki, Seong-Ho;Son, Seok-Min;Lee, Jin-Man
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.986-992
    • /
    • 2011
  • The alcohol fermentation of apple juice was optimized as a preliminary study for the production of natural apple cider vinegar. To gain an optimal fermentation yield, a central composite design was used to investigate the effects of the independent variables [initial Brix (12/14/16/18/20, $X_1$), fermentation time(48/54/60/66/72h, $X_2$), and fermentation temperature(24/26/28/30/$32^{\circ}C$, $X_3$)] on the dependent variables (alcohol content, reducing sugar, Brix, acidity). The alcohol content was 3.4-6.4%, the reducing sugar was 1.93-6.24%, and the Brix was $6.1-13.8^{\circ}$. The alcohol content was mainly affected by the fermentation temperature and increased along with the fermentation time and temperature. The amount of the reducing sugar was significantly affected by the initial Brix and fermentation temperature. The optimal conditions for the alcohol content were found to be 15.22 initial Brix, 64.97 h fermentation time, and $31.56^{\circ}C$ temperature.

Optimization of the extraction procedure for quantitative analysis of saponarin and the artificial light condition for saponarin production from barley sprout (고함량 사포나린 함유 보리 어린 순 재배를 위한 식물공장내 인공광 조건 및 사포나린 추출 분석법 최적화)

  • Oh, Kyeong-Yeol;Song, Yeong Hun;Lee, Duek-Yeong;Lee, Tae-Geun;Kim, Jin-Hyo
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.3
    • /
    • pp.197-203
    • /
    • 2021
  • Saponarin is a crucial component of barley sprout, and the production and quantitative analysis are issued to date. In this study, the optimal saponarin extraction conditions were presented on the subject of acetonitrile, ethanol, methanol, and water for the quantitative analysis in barley sprout through the extraction efficiency compared with the solvent concentration and extraction time using the reaction surface methodology. The optimal extraction time and solvent condition for saponarin were 3.9 h and 53.7% of aqueous methanol, respectively. In addition, the effect of LED artificial light on the saponarin production in barley sprouts was evaluated by the light cycle, light quantity, and light quality. The optimal cultivation conditions under artificial light for the growth of barley sprout and saponarin production were most effectively achieved on 220-320 μmol m-2 s-1 of the light quantity with 8 h day-1 of a daylight cycle under 6500K LED combined with red light. Furthermore, blue light was evaluated as the main factor in the biosynthesis of saponarin.

Extraction of Total Flavonoids from Lemongrass Using Microwave Energy: Optimization Using CCD-RSM (마이크로웨이브 에너지를 이용한 레몬그라스로부터 플라보노이드 성분의 추출: CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sick;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.168-173
    • /
    • 2021
  • In this study, we measured total flavonoids after extracting the total flavonoids from lemongrass which is known to have a high content of antioxidant ingredients when using microwave energy. Also, optimal extraction conditions of active ingredients using central composite design-response surface methodology (CCD-RSM) were presented. Both ultrapure water and alcohol were used as extraction solvents and the volume ratio of ethanol/ultrapure water, microwave irradiation time, and microwave irradiation power were set as independence variables. And the extraction yield and total flavonoids were measured. The optimal extraction conditions using CCD-RSM were the volume ratio of ethanol/ultrapure water = 56.3 vol.%, the microwave irradiation time = 6.1 min, and the microwave irradiation power = 574.6 W. We could also obtain expected results of yield = 17.2 wt.% and total flavonoids = 44.7 ㎍ QE/mL dw under the optimum conditions. The comprehensive satisfaction degree of this formula was 0.8562. The P-value was calculated for the yield of 0.037 and the total flavonoids content of 0.002. The average error from actual experiments established for the verification of conclusions was lower than 2.5%. Therefore, a high favorable level could be obtained when the CCD-RSM was applied to the optimization of extraction process.

Prediction of the human in vivo antiplatelet effect of S- and R-indobufen using population pharmacodynamic modeling and simulation based on in vitro platelet aggregation test

  • Noh, Yook-Hwan;Han, Sungpil;Choe, Sangmin;Jung, Jin-Ah;Jung, Jin-Ah;Hwang, Ae-Kyung;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • v.26 no.4
    • /
    • pp.160-165
    • /
    • 2018
  • Indobufen ($Ibustrin^{(R)}$), a reversible inhibitor of platelet aggregation, exists in two enantiomeric forms in 1:1 ratio. Here, we characterized the anti-platelet effect of S- and R-indobufen using response surface modeling using $NONMEM^{(R)}$ and predicted the therapeutic doses exerting the maximal efficacy of each enantioselective S- and R-indobufen formulation. S- and R-indobufen were added individually or together to 24 plasma samples from drug-naïve healthy subjects, generating 892 samples containing randomly selected concentrations of the drugs of 0-128 mg/L. Collagen-induced platelet aggregation in platelet-rich plasma was determined using a Chrono-log Lumi-Aggregometer. Inhibitory sigmoid $I_{max}$ model adequately described the anti-platelet effect. The S-form was more potent, whereas the R-form showed less inter-individual variation. No significant interaction was observed between the two enantiomers. The anti-platelet effect of multiple treatments with 200 mg indobufen twice daily doses was predicted in the simulation study, and the effect of S- or R-indobufen alone at various doses was predicted to define optimal dosing regimen for each enantiomer. Simulation study predicted that 200 mg twice daily administration of S-indobufen alone will produce more treatment effect than S-and R-mixture formulation. S-indobufen produced treatment effect at lower concentration than R-indobufen. However, inter-individual variation of the pharmacodynamic response was smaller in R-indobufen. The present study suggests the optimal doses of R-and S-enantioselective indobufen formulations in terms of treatment efficacy for patients with thromboembolic problems. The proposed methodology in this study can be applied to the develop novel enantio-selective drugs more efficiently.

Determination of Location and Depth for Groundwater Monitoring Wells Around Nuclear Facility (원자력이용시설 주변의 지하수 감시공의 위치와 심도 선정)

  • Park, Kyung-Woo;Kwon, Jang-Soon;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.245-261
    • /
    • 2019
  • Radioactive contaminant from a nuclear facility moves to the ecosystem by run-off or groundwater flow. Among the two mechanisms, contaminant plume through a river can be easily detected through a surface water monitoring system, but radioactive contaminant transport in groundwater is difficult to monitor because of lack of information on flow path. To understand the contaminant flow in groundwater, understanding of the geo-environment is needed. We suggest a method to decide on monitoring location and points around an imaginary nuclear facility by using the results of site characterization in the study area. To decide the location of a monitoring well, groundwater flow modeling around the study area was conducted. The results show that, taking account of groundwater flow direction, the monitoring well should be located at the downstream area. Also, monitoring sections in the monitoring well were selected, points at which groundwater moves fast through the flow path. The method suggested in the study will be widely used to detect potential groundwater contamination in the field of oil storage caverns, pollution by agricultural use, as well as nuclear use facilities including nuclear power plants.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.