DOI QR코드

DOI QR Code

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation

MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정

  • Received : 2019.09.19
  • Accepted : 2019.09.25
  • Published : 2019.09.30

Abstract

This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

본 논문은 명시적 유한요소 해석을 이용하여 군함이나 수상함 아래의 수중에서 어뢰가 폭발할 때의 파편들의 거동을 조사하기 위하여 작성되었다. 본 연구에서는 LS-DYNA에서 라그랑주-오일러 (ALE) 접근법이라 불리는 유체-구조물 상호작용(FSI) 기법을 적용하여 어뢰파편과 선체의 응답을 관찰하였다. 오일러 모델은 공기, 물, 폭약으로 구성되며, 라그랑주 모델은 파편과 선체로 이루어져 있다. 본 모델링의 핵심은 최악파편이 어뢰로부터 가까운 곳(4.5 m)에 위치한 선체에 파공을 일으킬 수 있는지 여부를 파악하는 데 있다. 시뮬레이션은 별도의 두 단계로 수행되었다. 첫 번째의 예비해석에서는 팽창하는 어뢰의 외피가 찢어지는 데 폭약에너지의 30%가 소모된다는 가정 하에 수중폭발 시의 파편속도에 대해 잘 알려져 있는 실험결과를 토대로 최악파편의 초기속도를 결정하였다. 두 번째의 총괄해석에서는 최악파편이 선체에 부딪치기 직전에 보일 것으로 예상되는 파편의 종단속도를 찾고자 하였다. 그 결과, 주어진 조건 하에서 최악파편의 초기속도는 매우 빠른 것으로 나타났다(400 및 1000 m/s). 하지만 충돌이 발생할 때의 파편과 선체 간의 속도차이는 불과 4 m/s 정도로 매우 작았다. 이 결과는 물에 의한 큰 항력의 영향도 있지만 선체에 부여한 비파괴 조건도 영향을 끼쳤을 것으로 보인다. 하지만 적어도 본 논문에서 가정한 해석조건 하에서는 최악파편의 느린 상대속도로 인하여 선체에 파공이 발생하기는 어려운 것으로 나타났다.

Keywords

References

  1. Gold, V.M. and E.L. Baker, 2008, A model for fracture of explosively driven metal shells, Engineering Fracture Mechanics, Vol. 75, pp. 275-289. https://doi.org/10.1016/j.engfracmech.2007.02.025
  2. Kong, X.S., W.G. Wu, J. Li, P. Chen and F. Liu, 2014, Experimental and numerical investigation on a multi-layer protective structure under the synergistic effect of blast and fragment loadings, International Journal of Impact Engineering, Vol. 65, pp.146-162. https://doi.org/10.1016/j.ijimpeng.2013.11.009
  3. LSTC (Livermore Software Technology Corporation), 2015a, LS-DYNA Keyword User's Manual, Livermore, CA.
  4. LSTC (Livermore Software Technology Corporation), 2015b, LS-DYNA Theory Manual, Livermore, CA.
  5. Payne, C.M., 2010, Principles of naval weapon systems, 2nd ed., Naval Institute Press.
  6. Reid, W.D., 1996, The response of surface ships to underwater explosions, Defence Science and Technology Organisation (DSTO), Aeronautical and Maritime Research Laboratory, Melbourne Victoria, Australia.
  7. Shah, Q. and H. Abid, 2012, LS-DYNA for Beginners - An insight into Ls-Prepost and Ls-Dyna, LAP Lambert Academic Publishing.
  8. Souli, M., 2000, LS-DYNA advanced course in ALE and fluid/structure coupling, Course Notes for Arbitrary Lagrangian-Eulerian Formulation Technique, Livermore Software Technology Corporation, Livermore, CA.
  9. Swisdak, Jr., M.M. and P.E. Montanaro, 1992, Hazards from underwater explosions, Report of Naval Surface Warfare Center, Indian Head Division, 10901 New Hampshire Avenue, Silver Spring, MD, 20903-5640.
  10. Trevino, T., 2000, Applications of Arbitrasy Lagrangian Eulerian (ALE) Analysis Appoach to Underwater and Air Explosion Problems, Master's thesis, Naval Postgraduate School, Monterey, CA, 93943-5000.
  11. White, F.M., 2011, Fluid Mechanics, 7th ed., McGraw Hill.
  12. Yoon, D.Y., et al., 2010, On the Attack against ROK Ship Cheonan, Ministry of National Defense, Republic of Korea, Myungjin Publication Incorporation.
  13. Zong, Z., Y. Zhao and H. Li, 2013, A numerical study of whole ship structural damage resulting from close-in underwater explosion shock, Marine Structures, Vol. 31, pp. 24-43. https://doi.org/10.1016/j.marstruc.2013.01.004