• Title/Summary/Keyword: surface impedance

Search Result 754, Processing Time 0.026 seconds

The Study on Reliability Improvement in Eddy Current Inspection by Signal Characteristic Optimization of Multi-coil Array Probe (다중센서 신호특성 최적화를 통한 와전류검사 신뢰성 개선연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.60-64
    • /
    • 2010
  • This paper introduces reliability improvement and time saving in eddy current inspection by signal characteristic optimization of multi-coil eddy current array probe. In the past, Multi-coil array probe and single probe were used for the gas turbine rotor surface inspection & defect evaluation. The multi-coil array probe was used for the broad area inspection. But the signal deviations among multi-coil array probe are maximum 28% in commercial probe. This differences were considered to impedance differences among coils, so it is very difficult to evaluate exact defect size. The signal deviations among multi-coil array probe are maximum 28% in commercial probe. So, single coil inspection was used for exact defect sizing. The purpose of this study is to improve signal deviations of multi-coil array probe. The introduced new technology can improves this deviation by adjusting input voltage in each coil. At first, apply same voltage in each coil and collect signal amplitude of each coil. And calculate new input voltage based on signal amplitude of each coil. If the signal amplitude deviation is within 5% among multi-coil array probe, the signal amplitude of multi-coil array probe is reliable. The proposed technology gives 2% signal deviation among multi-coil array probe. The proposed new technology gives reliability improvement and inspection time saving in eddy current inspection.

Electrochemical Studies of Lithium Ion Battery Current Collector in the Aprotic Electrolytes: I. Al Current Collector (비수용성 전해질내 리튬이온전지용 집전체의 전기화학적 특성 연구: I. Al 집전체)

  • Park, Heai-Ku
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.620-627
    • /
    • 1999
  • Electrochemical properties of the Al current collector being used in lithium ion batteries have been studied in the 4 different aprotic electrolytes(1 M $LiBF_4$ EC : DMC, 1 M $LiBF_4$ EC : EMC. 1 M $LiPF_6$ EC : DMC. 1 M $LiPF_6$ EC : EMC) employing cyclic voltammetry and impedance measurement. Al electrode showed a wide range of the electrochemical window(0.5~4.1 V vs. $Li/Li^{+}$). However, solid interfacial materials has been formed on the Al surface due to reduction of impurities($H_2O$, $O_2$, etc), lithium salts, and electrolytes at low applied potentials, and aluminum oxides in the highly oxidizing potential as well. Especially, Al current collector was susceptible to localized in consequence of impurities in electrolytes.

  • PDF

Fabrication and Electrochemical Characterization of Ion-selective Composite Carbon Electrode Coated with Sulfonated Poly(Ether Ether Ketone) (Sulfonated Poly(Ether Ether Ketone)을 코팅한 이온선택성 복합탄소전극의 제조 및 전기화학적 특성 분석)

  • Choi, Jae-Hwan;Park, Chan-Mi
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.247-252
    • /
    • 2013
  • Sulfonated poly(ether ether ketone) (SPEEK) with a certain degree of sulfonation were synthesized by reacting PEEK and sulfuric acid at different reaction time. Then ion-selective composite carbon electrodes (ISCCE) were fabricated by coating the prepared SPEEK on the surface of carbon electrodes. The specific capacitance and resistance of the ISCCE were analyzed by electrical impedance spectroscopy. The ion exchange capacities (IEC) of the SPEEKs were measured in the range of 1.60~2.57 meq/g depending on the sulfonation time. The SPEEK more than 2.5 meq/g of IEC was considered unsuitable for fabricating the ISCCE because it was dissolved in water. The specific capacitance of the prepared ISCCE increased with increasing the IEC of coated SPEEKs and the capacitance was improved up to about 20% compared to that of uncoated carbon electrode. In addition, the electrical resistance of coating layer decreased significantly with increasing the IEC of coated SPEEKs. It is expected that the desalination efficiency of conventional capacitive deionization process can be improved by using the prepared ISCCE coated with SPEEK.

Evaluations of Y2O3 Powder Synthesized Using Oxalic Acid (옥살산을 이용한 Y2O3 분말제조와 특성 평가)

  • Son, Bo-Young;Jung, Mi-Ewon
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.444-449
    • /
    • 2011
  • Nano-sized $Y_2O_3$ powders were prepared via a sol-gel method starting with $Y(NO_3)_3{\cdot}6H_2O$ (Yttrium(III) nitrate hexahydrate) and water with ethanol as a cosolvent. $Y_2O_3$ is an important rare earth oxide and has been considered for use in nuclear applications, such as ceramic materials, due to its excellent optical and refractory characteristics. It has been used as a chemically stable substrate, a crucible material for melting reactive metals, and a nozzle material for jet casting molten rare earth-iron magnetic alloys. Oxalic acid ($C_2H_2O_4$) has been adopted as a chelating agent in order to control the rate of hydrolysis and polycondensation, and ammonia was added in order to adjust the base condition. The synthesized $Y_2O_3$ powder was characterized using TG/DTA, XRD, FE-SEM, BET and Impedance Analyzer analyses. The powder changed its properties in accordance with the pH conditions of the catalyst. As the pH increases according to the FE-SEM, the grain grew and it showed that the pore size decreased while confirming the effect of the grain size. The nano-material $Y_2O_3$ powders demonstrated that the surface area was improved with the addition of oxalic acid with ammonium hydroxide.

Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method (Bar-Coating 방법으로 제조한 직접메탄올 연료전지 MEA의 성능)

  • Kang, Se-Goo;Park, Young-Chul;Kim, Sang-Kyung;Lim, Seong-Yop;Jung, Doo-Hwan;Jang, Jae-Hyuk;Peck, Dong-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.16-21
    • /
    • 2008
  • The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.

Hygroscopic Characteristics of $TiO_{2-x}$ Thin Film Humidity Sensors by RF Magnetron Sputtering (고주파 마그네트론 스퍼터링에 의한 $TiO_{2-x}$ 박막 습도센서의 습도감지특성)

  • Lee, Sung-Pil;Yoon, Yeu-Kyung
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.83-89
    • /
    • 1998
  • $TiO_{2-x}$ thin film humidity sensors have been fabricated by sputtering method and their physical and hygroscopic characteristics have been investigated. The sputtering conditions and sintering conditions affect the sensor's sensitivity toward humidity. AES and SEM micrographs were taken for the analysis of crystal structures, surface morphology caused by adsorbed water vapour. $TiO_{2-x}$ humidity sensors showed negative impedance-humidity characteristics and the sensor which was fabricated by experimental condition 2(rf power of 200W) showed higher sensitivity and linearity than others. Then the slope of the sensor was about $0.794\;K{\Omega}/%RH$ and the response time of $TiO_{2-x}$ humidity sensors was about 2 min. for adsorption and about 3 min. for desorption at the operating temperature of $30^{\circ}C$.

  • PDF

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

Performance Analysis with Various Amounts of Electrolyte in a Molten Carbonate Fuel Cell

  • Kim, Yu-Jeong;Kim, Tae-Kyun;Lee, Ki-Jeong;Lee, Choong-Gon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.234-240
    • /
    • 2016
  • The effect of initial electrolyte loading (IEL) on cell performance in a coin-type molten carbonate fuel cell (MCFC) was investigated in this work. Since the material of MCFC depends on the manufacturer, optimisation requires experimental investigation. In total, four IEL values, 1.5, 2.0, 3.0, and 4.0 g, were used, corresponding to a pore filling ratio (PFR) of 38, 51, 77, and 102%, respectively. The cell performance with respect to the PFR was analysed via steady-state polarisation, step-chronopotentiomtery, and impedance methods. The electrochemical analyses revealed that internal resistance and overpotential of the cell decreased with increasing PFR, and a large overpotential was observed when the PFR was 102%, probably due to the flooding phenomenon. After operation, cross-section of the cell was analysed via surface analysis of SEM and EDS methods, and the remaining electrolyte was estimated by dissolution of the cell in 10 wt% acetic acid. A linear relationship between IEL and the weight reduction ratio by dissolution was obtained. Thus, the remaining amount of electrolyte could be measured after operation. The results of SEM and EDS showed that a PFR of 38 and 102% showed a lack and flooding of electrolytes at the cell, respectively, which led to a large overpotential. This work reports that MCFC performance is allowed only in the narrow range of PFR.

Sustainable Development of Palm Oil: Synthesis and Electrochemical Performance of Corrosion Inhibitors

  • Porcayo-Calderon, J.;Rivera-Munoz, E.M.;Peza-Ledesma, C.;Casales-Diaz, M.;de la Escalera, L.M. Martinez;Canto, J.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.133-145
    • /
    • 2017
  • Palm oil production is among the highest worldwide, and it has been mainly used in the food industry and other commodities. Currently, a lot of palm oil production has been destined for the synthesis of biodiesel; however, its use in applications other than the food industry has been questioned. Thereby for a sustainable development, in this paper the use of palm oil of low quality for corrosion inhibitors synthesis is proposed. The performance of the synthesized inhibitors was evaluated by using electrochemical techniques such as open circuit potential measurements, linear polarization resistance and electrochemical impedance spectroscopy. The results indicate that the fatty amides from palm oil are excellent corrosion inhibitors with protection efficiencies greater than 98%. Fatty amides molecules act as cathodic inhibitors decreasing the anodic dissolution of iron. When fatty amides are added, a rapid decrease in the corrosion rate occurs due to the rapid formation of a molecular film onto carbon steel surface. During the adsorption process of the inhibitor a self-organization of the hydrocarbon chains takes place forming a tightly packed hydrophobic film. These results demonstrate that the use of palm oil for the production of green inhibitors promises to be an excellent alternative for a sustainable use of the palm oil production.

A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE (SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구)

  • Han, Kyoung Ho;Lee, Dae Hyun;Yoon, Do Young;Choi, Sangil
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2020
  • Fenton oxidation method using hydrogen peroxide is an eco-friendly oxidation method used in water treatment and soil restoration. When removing pollutants by this method, it is quite important to properly regulate the concentration of hydrogen peroxide according to the concentration of the contaminants. In this study, electrochemical biosensors using HRP (horseradish peroxidase) enzymes were manufactured and studies were conducted on the activity of enzymes and the detection characteristics of hydrogen peroxide. HRP were electro deposited with chitosan and AuNP on the working electrode surface of the SPCE (Screen Printed Carbon Electrode). Then, the fixation of enzymes was confirmed using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The activity of HRP enzymes was also identified from chronoamperometry (CA) and UV spectroscopy. After immersing the biosensor in PBS solution the current generated from electrodes by titrating hydrogen peroxide was measured from CA analysis. The generated current increased linearly for the concentration of hydrogen peroxide, and a calibration curve was derived that could predict the concentration of hydrogen peroxide from the current.