DOI QR코드

DOI QR Code

A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE

SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구

  • Han, Kyoung Ho (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Dae Hyun (GM Technical center Korea) ;
  • Yoon, Do Young (Department of Chemical Engineering, Kwangwoon University) ;
  • Choi, Sangil (Department of Environmental Engineering, Kwangwoon University)
  • 한경호 (광운대학교 공과대학 화학공학과) ;
  • 이대현 ;
  • 윤도영 (광운대학교 공과대학 화학공학과) ;
  • 최상일 (광운대학교 공과대학 환경공학과)
  • Received : 2020.07.10
  • Accepted : 2020.07.21
  • Published : 2020.08.31

Abstract

Fenton oxidation method using hydrogen peroxide is an eco-friendly oxidation method used in water treatment and soil restoration. When removing pollutants by this method, it is quite important to properly regulate the concentration of hydrogen peroxide according to the concentration of the contaminants. In this study, electrochemical biosensors using HRP (horseradish peroxidase) enzymes were manufactured and studies were conducted on the activity of enzymes and the detection characteristics of hydrogen peroxide. HRP were electro deposited with chitosan and AuNP on the working electrode surface of the SPCE (Screen Printed Carbon Electrode). Then, the fixation of enzymes was confirmed using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The activity of HRP enzymes was also identified from chronoamperometry (CA) and UV spectroscopy. After immersing the biosensor in PBS solution the current generated from electrodes by titrating hydrogen peroxide was measured from CA analysis. The generated current increased linearly for the concentration of hydrogen peroxide, and a calibration curve was derived that could predict the concentration of hydrogen peroxide from the current.

과산화수소를 이용한 펜톤(Fenton)산화법은 수처리 및 토양 복원분야에서 활용되는 친환경 산화방법이다. 이 방법으로 오염물질을 제거할 때, 오염물의 농도에 따라 과산화수소의 농도를 적절하게 조절하는 것이 상당히 중요하다. 이에 본 연구에서는 HRP (horseradish peroxidase) 효소를 이용한 전기화학적 바이오센서를 제조하고 효소의 활성과 과산화수소의 검출 특성에 대한 연구를 수행하였다. SPCE (Screen Printed Carbon Electrode)의 작업 전극 표면에 키토산과 AuNP를 이용하여 HRP를 전착하였다. 이 후, 전위주사법(CV)과 전기화학적 임피던스 분광법(EIS)을 이용하여 효소의 고정화를 확인하였다. 또한 시간대전류법(CA)과 UV 분광법으로부터 HRP 효소의 활성을 확인하였다. 본 연구에서 제조한 바이오센서를 PBS 전해질에 담그고 과산화수소를 적정하여 CA 분석으로부터 전극에서 발생하는 전류를 측정하였다. 발생 전류는 과산화수소의 농도에 대하여 선형적으로 증가하였으며, 전류로부터 과산화수소의 농도를 예측할 수 있는 검정곡선을 도출하였다.

Keywords

References

  1. V. Kavitha and K. Palanivelu, 'Destruction of cresols by Fenton oxidation process', Water Research, 39, 3062 (2005). https://doi.org/10.1016/j.watres.2005.05.011
  2. K. H. Ro, Y. I. Choi, J. H. Jung. S. H. Jang, and B. G. Jung, 'Degradation characteristics of diesel-contaminated soil according to hydrogen peroxide ($H_2O_2$) concentrations', J. of the Korean Society for Environmental Technology, 19, 391 (2018). https://doi.org/10.26511/JKSET.19.5.1
  3. S. K. Rahul, M. Basavaraju, and S. Shrihari, 'Fenton and photo-Fenton oxidation processes for degradation of 3-aminopyridine from water', APCBEE Procedia, 9, 25 (2014). https://doi.org/10.1016/j.apcbee.2014.01.005
  4. H. L. Zhang, G. S. Lai, D. Y. Han and A. M. Yu, 'An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres', Analytical and Bioanalytical Chemistry, 390, 971 (2008). https://doi.org/10.1007/s00216-007-1748-3
  5. B. W. Park, R. Zheng, K. Ko, B. D. Cameron, D. Y. Yoon and D. S. Kim, 'A novel glucose biosensor using bi-enzyme incorporated with peptide nanoparticles', Biosensors and Bioelectronics, 38, 295 (2012). https://doi.org/10.1016/j.bios.2012.06.005
  6. L. B. Sagle, K. R. Laura, A. R. Julia and P. V. D. Richard, 'Advances in localized surface plasmon resonance spectroscopy biosensing', Nanomedicine, 6, 1447 (2011). https://doi.org/10.2217/nnm.11.117
  7. L. Rassaei, M. Amiri, C. M. Cirtiu, M. Sillanpaa, F. Marken and M. Sillanapaa, 'Nanoparticles in electrochemical seonsors for environmental monitoring', Trends in Analytical Chemistry, 30, 1704 (2011). https://doi.org/10.1016/j.trac.2011.05.009
  8. J. P. Hart, A. Crew, E. Crouch, K. C. Honeychurch and R. M. Pemberton, 'Some recent designs and developments of screen-printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses', Analytical Letters, 37, 789 (2004). https://doi.org/10.1081/AL-120030682
  9. O. D. Renedo, M. A. Alonso-Lomillo and M. J. A. Martinez, 'Recent developments in the field of screen-printed electrodes and their related applications', Talanta, 73, 202 (2011). https://doi.org/10.1016/j.talanta.2007.03.050
  10. S. Cosnier, 'Biosensors based on electropolymerized films: new trends', Analytical and Bioanalytical Chemistry, 377, 507 (2003). https://doi.org/10.1007/s00216-003-2131-7
  11. E. Llaudet, N. P. Botting, J. A. Crayston and N. Dale, 'A three-enzyme microelectrode sensor for detecting purine release from central nervous system', Biosensors and Bioelectronics, 18, 43 (2003). https://doi.org/10.1016/S0956-5663(02)00106-9
  12. S. Ledru, N. Ruille and M. Boujtita, 'One-step screen-printed electrode modified in its bulk with HRP based on direct electron transfer for hydrogen peroxide detection in flow injection mode', Biosensors and Bioelecronics, 21, 1591 (2006). https://doi.org/10.1016/j.bios.2005.07.020
  13. T. Tangkuaram, C. Ponchio, T. Kangkasomboon, P. Katikawong and W. Veerasai, 'Design and development of a highly stable hydrogen peroxide biosensor on screen printed carbon electrode based on horseradish peroxidase bound with gold nanoparticles in the matrix of chitosan'. Biosensors and Bioelectronics, 22, 2071 (2007). https://doi.org/10.1016/j.bios.2006.09.011
  14. J. Zhang and M. Oyama, 'A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode', Electrochimica Acta, 50, 85 (2004). https://doi.org/10.1016/j.electacta.2004.07.026
  15. B. Neiman, E. Grushka and O. Lev, 'Use of gold nanoparticles to enhance capillary electrophoresis', Analytical Chemistry, 73, 5220 (2001). https://doi.org/10.1021/ac0104375
  16. A. N. P. Hiner, J. Hernandez-Ruiz, M. B. Arnao, F. Garcia-Canovas and M. Acosta, 'A comparative study of the purity, enzyme activity, and inactivation by hydrogen peroxide of commercially available horseradish peroxidase isoenzymes A and C', Biotechnology and Bioengineering, 50, 609 (1996). https://doi.org/10.1002/(SICI)1097-0290(19960620)50:6<609::AID-BIT1>3.0.CO;2-O
  17. A. J. Bard, 'Electochemical methods', Wiley, chapter 6 and 11 (2001).
  18. Jr. D. K. Gosser, 'Cyclic voltammetry simulation and analysis of reaction mechanisms', VCH Publishers, chapter 2 (1993).
  19. B. W. Park, D. S. Kim and D. Y. Yoon, 'Surface modification of gold electrode with gold nanoparticles and mixed self-assembled monolayers for enzyme biosensors', Korean Journal of Chemical Engineering, 28, 64 (2011). https://doi.org/10.1007/s11814-010-0349-6
  20. Y. Liu, T. Geng and J. Gao, 'Layer-by-layer immobilization of horseradish peroxidase on a gold electrode modified with colloidal gold nanoparticles', Microchmica Acta, 161, 241 (2008). https://doi.org/10.1007/s00604-007-0779-y
  21. B. Y. Chang and S. M. Park, 'Electrochemical impedance spectroscopy', Annual Review of Analytical Chemistry, 3, 207 (2010). https://doi.org/10.1146/annurev.anchem.012809.102211
  22. S. M. Park and J. S. Yoo, 'Electrochemical impedance spectroscopy for better electrochemical measurements', Analytical Chemistry, November 1, 459A (2003).
  23. B. Y. Park, K. Ko, D. Y. Yoon and D. S. Kim, 'Enzyme activity assay for horseradish peroxidase encapsulated in peptide nanotubes', Enzyme and Microbial Technology, 51, 81 (2012). https://doi.org/10.1016/j.enzmictec.2012.04.004
  24. X. Xu, S. Liu and H. Ju, 'A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode', Sensors, 3, 350 (2003). https://doi.org/10.3390/s30900350