• Title/Summary/Keyword: surface fluorination

Search Result 58, Processing Time 0.026 seconds

Fluorination of Polymethylmethacrylate (PMMA) Film and Its Surface Characterization (폴리메틸메타아크릴레이트(PMMA) 필름의 불소화 및 그 표면특성)

  • Jung, Min-Jung;Lim, Jae-Won;Park, In-Jun;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.317-322
    • /
    • 2010
  • In this study, poly(methyl methacrylate) (PMMA) was treated with changing mixing ratios of $F_2$ and $O_2$ using oxyfluorination method for hydrophilic modification of PMMA film. For the characterizations of oxyfluorinated PMMA surface, contact angle, surface free energy, X-ray photoelectron spectroscopy (XPS) and optical transmittance (UV-vis) were carried out. After the oxyfluorination, PMMA surface became more hydrophilic showing the decrease of water contact angle from $69^{\circ}$ to $44^{\circ}$. So, surface free energy of oxyfluorinated PMMA film was increased from 46 to $58\;mN\;m^{-1}$. These results are attributed to hydrophilic functional groups such as hydroxyl group formed oxyfluorination method on the PMMA surface. From XPS results, it was confirmed that O/C concentration ratio on the surface of PMMA was increased, the amount of C-OH bonding which shows hydrophilicity was also largely increased from 6.7 to 24.8% with increasing fluorine partial-pressure via the oxyfluorination, The oxyfluorination conditions, room temperature, 1 bar with one mixture ratio of $F_2$ to $O_2$ had little influence on optical transmittance properties of PMMA film but enhanced its surface hydrophilicity. This result suggests that oxyfluorination method could be useful to change hydrophobic PMMA surface to hydrophilic.

Bioinspired Metal Surfaces with Extreme Wettability Contrast

  • Yu, Ui-Seon;Heo, Eun-Gyu;Go, Tae-Jun;Lee, Gwang-Ryeol;O, Gyu-Hwan;Mun, Myeong-Un
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.122-122
    • /
    • 2012
  • The exterior structures of natural organisms have continuously evolved by controlling wettability, such as the Namib Desert beetle, whose back has hydrophilic/hydrophobic contrast for water harvesting by mist condensation in dry desert environments, and some plant leaves that have hierarchical micro/nanostructures to collect or repel liquid water. In this work, we have provided a method for wettability contrast on metals by both nano-flake or needle patterns and tuning of the surface energy. Metals including steel alloys and aluminum were provided with hierarchical micro/nanostructures of metaloxides induced by fluorination and a subsequent catalytic reaction of fluorine ions on metal surfaces in water with various ranges from room to boiling temperature of water. Then, a hydrophobic material was deposited on the structured surfaces, rendering superhydrophobicity. Plasma oxidization induces the formation of superhydrophilic surfaces on selective regions surrounded by superhydrophobic surfaces. We show that wettability contrast surfaces align liquid water within patterned hydrophilic regions during the condensation process. Furthermore, this method could have a greater potential to align other liquids or living cells.

  • PDF

Phase Stability and Plasma Erosion Resistance of La-Gd-Y Rare-earth Oxide - Al2O3 Ceramics (La-Gd-Y 희토류계 산화물-알루미나 세라믹스의 상안정화 영역과 내플라즈마 특성)

  • Kim, Kyeong-Beom;Lee, Sung-Min
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.540-545
    • /
    • 2010
  • In this study, we have investigated new plasma resistant materials with less usage of rare-earth oxides than $Y_2O_3$ which is currently used in the semiconductor industry. We observed the stability ranges of $(Gd{\cdot}Y)_3Al_5O_{12}$ and $(La{\cdot}Y)Al_{11}O_{18}$ ternary systems, and measured their etch rates under typical fluorine plasma. $(Gd{\cdot}Y)_3Al_5O_{12}$ system showed an extensive solid solution up to 80 mol% gadolinium, but $(La{\cdot}Y)Al_{11}O_{18}$ showed a negligible substitution between rare-earth ions, which can be explained by the differences between the ionic radii. The etch rates depended on the total amount of rare-earth oxides but not on the substitution of the rare-earth ions. When the specimen was examined using XPS after the exposure to fluorine plasma, the strong surface fluorination was observed with a shift of the binding energy to higher energy.

A Study on Etching of $UO_2$, Co, and Mo Surface with R.F. Plasma Using $CF_4\;and\;O_2$

  • Kim Yong-Soo;Seo Yong-Dae
    • Nuclear Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.507-514
    • /
    • 2003
  • Recently dry decontamination/surface-cleaning technology using plasma etching has been focused in the nuclear industry. In this study, the applicability of this new dry processing technique are experimentally investigated by examining the etching reaction of $UO_2$, Co, and Mo in r.f. plasma with the etchant gas of $CF_4/O_2$ mixture. $UO_2$ is chosen as a representing material for uranium and TRU (TRans-Uranic) compounds while metallic Co and Mo are selected because they are the principal contaminants in the used metallic nuclear components such as valves and pipes made of stainless steel or inconel. Results show that in all cases maximum etching rate is achieved when the mole fraction of $UO_2\;in\;CF_4/O_2$ mixture gas is $20\%$, regardless of temperature and r.f. power. In case of $UO_2$, the highest etching reaction rate is greater than 1000 monolayers/min. at $370^{\circ}C$ under 150 W r.f. power which is equivalent to $0.4{\mu}m/min$. As for Co, etching reaction begins to take place significantly when the temperature exceeds $350^{\circ}C$. Maximum etching rate achieved at $380^{\circ}C\;is\;0.06{\mu}m/min$. Mo etching reaction takes place vigorously even at relatively low temperature and the reaction rate increases drastically with increasing temperature. Highest etching rate at $380^{\circ}C\;is\;1.9{\mu}m/min$. According to OES (Optical Emission Spectroscopy) and AES (Auger Electron Spectroscopy) analysis, primary reaction seems to be a fluorination reaction, but carbonyl compound formation reaction may assist the dominant reaction, especially in case of Co and Mo. Through this basic study, the feasibility and the applicability of plasma decontamination technique are demonstrated.

Physical-Chemical Properties of Graphite Foams Produced with Fluorinated Mesophase Pitch (불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성)

  • Kim, Ji-Hyun;Kim, Do Young;Lee, Hyung-Ik;Lee, Young-Seak
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.830-837
    • /
    • 2016
  • In order to improve the compressive strength of graphite foams (GFms), mesophase pitch (MP) was stabilized in air atmosphere and then fluorinated at different conditions. The Fluorine/Carbon (F/C) in surface-chemical contents of fluorinated MP has range of 23.75%~61.48% according to the different fluorine partial pressure. The compressive strengths of GFms prepared from fluorinated MP were increased in proportion to the apparent densities. The compressive strength of the GFm produced from MP with 35.93% of F/C (%) showed maximum value in $2.93{\pm}0.06MPa$, which was increased up to 27.95% than that of the GFm prepared from un-fluorinated MP. This result was attributed that the interface bonding between of MPs due to fluorine functional groups with high surface energy helped to improve compressive strength of the GFm.

A Study on Plasma Etching Reaction of Cobalt for Metallic Surface Decontamination (금속 표면 제염을 위한 코발트의 플라즈마 식각 반응 연구)

  • Jeon, Sang-Hwan;Kim, Yong-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2008
  • In this study, plasma processing of metal surface is experimentally investigated to enhance the surface decontamination efficiency and to find out the reaction mechanism. Cobalt, the major contaminant in the nuclear facilities, and three fluorine-containing gases, $CF_4/O_2$, $SF_6/O_2$, and $NF_3$ are chosen for the investigation. Thin metallic disk specimens are prepared and their surface etching reactions with the three plasma gases are examined. Results show that the maximum etching rate of $17.2\;{\mu}m/min.$ is obtained with NF3 gas at $420^{\circ}C$, while with $CF_4/O_2$, $SF_6/O_2$ gas plasmas those of $2.56\;{\mu}m/min.$ and $1.14\;{\mu}m/min.$ are obtained, respectively. Along with etching experiments, constituent elements of the reaction products are identified to be cobalt, oxygen, and fluorine by AES (Auger Electron Spectroscopy) analysis. It turns out that the oxygen atoms are physically adsorbed ones to the surface from the ambient not participation ones during the analysis after reaction, which supports that the surface reaction of cobalt is mainly to be a fluorination reaction.

  • PDF

Characteristics and Stability of Liquid Crystal Alignment for Interfacial Properties of Polyimide-Liquid Crystal (폴리이미드-액정 계면의 특성에 따른 액정 배향의 특성 및 안정성)

  • 동원석;이미혜;백상현
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.484-492
    • /
    • 2003
  • How the characteristics and stability of the rubbing-induced alignment of nematic liquid crystals (LCs) relate to the interfacial characteristics of LC-polyimide has been studied. The characteristics of the LC alignment (such as the LC texture, the pretilt angle, and the anchoring energy) and their thermal stability have been investigated for 5 polyimides synthesized for this work. The work showed that the rubbed polyimide alignment layer induces the strong LC anchoring and that the characteristics and stability of LC alignment are determined by the short-ranged interactions between LC and polyimide molecules at the alignment layer surface. The increased flexibility of the polyimide accelerates thermal imidization, increases the pretilt angle, and improves the alignment stability. It also turned out that fluorination of the polyimide tends to deteriorate the alignment uniformity and stability. No distinct differences in the alignment characteristics were shown for the aromatic- and alicyclic-dianhydride polyimides.

Effect of Fluorination of Carbon Nanotubes on Physico-chemical and EMI Shielding Properties of Polymer Composites (고분자 복합재의 물리화학적 및 전자파차폐 특성에 미치는 탄소나노튜브의 불소화 영향)

  • Lee, Si-Eun;Kim, Doyoung;Lee, Man Young;Lee, Min-Kyung;Jeong, Euigyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.114-121
    • /
    • 2015
  • Mutli-walled carbon nanotubes (MWCNTs) were surface-modified by a hydrofluoric acid solution to remove impurities and improve interfacial bonding and dispersion of nanotubes in an epoxy matrix. The crystallinity on the surface of treated MWCNTs was investigated by X-ray photoelectron spectroscopy and Raman spectroscopy. The mechanical properties were characterized by tensile test, and the enhancement of mechanical properties of the modified MWCNTs/epoxy composites was indicated by a 33% increase in tensile strength. The electromagnetic interference shielding effectiveness (EMI-SE) of modified MWCNTs/epoxy composites was improved with an increase in concentration of hydrofluoric solution, and EMI-SE showed the maximum increase with 25% HF. However, mechanical and EMI-SE properties didn't show further increase with over 50% HF concentration because the properties of MWCNTs were influenced by degradation of crystallinity and intrinsic properties of MWCNTs. The mechanical and electrical property enhancements of the polymer composites are attributed to the modification of MWCNTs which improve crystallinity of MWCNTs and dispersion in the epoxy resin.