DOI QR코드

DOI QR Code

Physical-Chemical Properties of Graphite Foams Produced with Fluorinated Mesophase Pitch

불소화 메조페이스 핏치로 제조된 그라파이트 폼의 물리/화학적 특성

  • Kim, Ji-Hyun (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Do Young (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Hyung-Ik (The 4th R&D Institute-4, Agency for Defense Development) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • Received : 2016.06.01
  • Accepted : 2016.09.06
  • Published : 2016.12.01

Abstract

In order to improve the compressive strength of graphite foams (GFms), mesophase pitch (MP) was stabilized in air atmosphere and then fluorinated at different conditions. The Fluorine/Carbon (F/C) in surface-chemical contents of fluorinated MP has range of 23.75%~61.48% according to the different fluorine partial pressure. The compressive strengths of GFms prepared from fluorinated MP were increased in proportion to the apparent densities. The compressive strength of the GFm produced from MP with 35.93% of F/C (%) showed maximum value in $2.93{\pm}0.06MPa$, which was increased up to 27.95% than that of the GFm prepared from un-fluorinated MP. This result was attributed that the interface bonding between of MPs due to fluorine functional groups with high surface energy helped to improve compressive strength of the GFm.

그라파이트 폼의 압축강도를 향상시키기 위하여 메조페이스 핏치를 공기분위기에서 산화안정화 한 후 다양한 불소 부분압으로 처리하였다. 불소화 처리된 메조페이스 핏치의 불소/탄소 표면화학 조성은 불소 부분압에 따라서 약 23.75%~61.48%의 범위를 가진다. 불소화 메조페이스 핏치기반 그라파이트 폼의 압축강도는 겉보기 밀도의 증가에 비례하여 증가되었다. 불소/탄소 표면화학 조성이 35.93%의 값을 갖는 메조페이스 핏치로부터 제조된 그라파이트 폼의 압축강도는 최대 $2.93{\pm}0.06MPa$의 값을 보여 주었으며, 이 값은 미처리된 메조페이스 핏치로부터 제조된 그라파이트 폼과 비교하여 27.95% 증가되었다. 이러한 결과는 표면에너지가 큰 불소 작용기로 인한 메조페이스 핏치간의 계면결합력이 그 압축강도를 증가시켰기 때문으로 여겨진다.

Keywords

References

  1. Inagaki, M., Qiu, J. and Guo, Q., "Carbon foam: Preparation and Application," Carbon, 87, 128-152(2015). https://doi.org/10.1016/j.carbon.2015.02.021
  2. Klett, J., Hardy, R., Romine, E., Walls, C. and Burchell, T., "Highthermal-conductivity, Mesophase-pitch-derived Carbon Foams: Effect of Precursor on Structure and Properties," Carbon, 38(7), 953-973(2000). https://doi.org/10.1016/S0008-6223(99)00190-6
  3. Kim, J. H., Jeong, E. and Lee, Y. S., "Preparation and Characterization of Graphite Foams," J. Ind. Eng. Chem., 32, 21-33(2015). https://doi.org/10.1016/j.jiec.2015.09.003
  4. Lee, S., Kim, J. H., Jeong, E. and Lee, Y. S., "The Preparation and Property of Carbon Foams From Carbon Black Embedded Pitch Using PU Template," Korean Chem. Eng. Res., 54(2), 268-273 (2016). https://doi.org/10.9713/kcer.2016.54.2.268
  5. Jafari, A. J., Kakavandi, B., Kalantary, R. R., Gharibi, H., Asadi, A., Azari, A., Babaei, A. A. and Takdastan, A., "Application of Mesoporous Magnetic Carbon Composite for Reactive Dyes Removal: Process Optimization Using Response Surface Methodology," Korean J. Chem. Eng., 33(10), 2878-2890(2016). https://doi.org/10.1007/s11814-016-0155-x
  6. Delabarre, C., Guerin, K., Dubois, M., Giraudet, J., Fawal, Z. and Hamwi, A., "Highly Fluorinated Graphite Prepared From Graphite Fluoride Formed Using $BF_3$ Catalyst," J. Fluorine Chem., 126(7), 1078-1087(2005). https://doi.org/10.1016/j.jfluchem.2005.03.019
  7. Zhang, J., Shi,, J., Wu, G., Guo, X., Guo, Q. and Liu, L., "Changes in the Structure and Functional Groups Produced During the Fluorination of Mesophase Microbeads," Carbon, 49(5), 1628-1634 (2011). https://doi.org/10.1016/j.carbon.2010.12.046
  8. Fujimoto, H., Yoshikawa, M., Mabuchi, A. and Maeda, T., "Transparent Carbon-fluorine Compounds Prepared by the Heat Treatment of Pitch Fluoride Under a Fluorine Atmosphere," J. Fluorine Chem., 57(1-3), 65-71(1992). https://doi.org/10.1016/S0022-1139(00)82817-1
  9. Mochida, I., Korai, Y., Ku, C. H., Watanabe, F. and Sakai, Y., "Chemistry of Synthesis, Structure, Preparation and Application of Aromatic Derived MP," Carbon, 38(2), 305-328(2000). https://doi.org/10.1016/S0008-6223(99)00176-1
  10. Li, S., Guo, Q., Song, Y., Shi, J. and Liu, L., "Effects of Pitch Fluoride on the Thermal Conductivity of Carbon Foam Derived From Mesophase Pitch," Carbon, 48(4), 1312-1320(2010). https://doi.org/10.1016/j.carbon.2009.01.036
  11. Kim, D. W. and Kim, J. S., "Mechanical Properties of Carbon Nanotube/Polyurethane Nanocomposites via PPG Dispersion with MWCNTs," Korean Chem. Eng. Res., 53(6), 703-708(2015). https://doi.org/10.9713/kcer.2015.53.6.703
  12. Fischer, L., Siemann, U. and Ruland, W., "Structure and Properties of Fluorinated Carbon Fibers," Colloid. Polym. Sci., 261(9), 744-749(1983). https://doi.org/10.1007/BF01410948
  13. Lee, Y. S. and Rho, J. S., "Fluorination of Carbon Materials and Their Properties," Prospectives of Industrial Chemistry, 6(2), 33-42(2003).
  14. Li, X., Basso, M. C., Braghiroli, F. L., Fierro, V., Pizzi, A. and Celzard, A., "Tailoring the Structure of Cellular Vitreous Carbon Foams," Carbon, 50(5), 2026-2036(2012). https://doi.org/10.1016/j.carbon.2012.01.004
  15. Munoz, E., Ruiz-Gonzalez, M. L., Seral-Ascaso, A., Sanjuan, M. L., Gonzalez-Calbet, J. M., Laguna, M. and de la Fuente, G. F., "Tailored Production of Nanostructured Metal/carbon Foam by Laser Ablation of Selected Organometallic Precursors," Carbon, 48(6), 1807-1814(2010). https://doi.org/10.1016/j.carbon.2010.01.025
  16. Sanchez-Coronado, J. and Chung, D. D. L., "Thermomechanical Behavior of a Graphite Foam," Carbon, 41(6), 1175-1180 (2003). https://doi.org/10.1016/S0008-6223(03)00025-3
  17. Straatman, A. G., Gallego, N. C., Thompson, B. E. and Hangan, H., "Thermal Characterization of Porous Carbon Foam-convection in Parallel Flow," Int. J. Heat. Mass. Transfer, 49(11-12), 1991-1998(2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.028
  18. Kim, J. H., Lee, S., Jeong, E. and Lee, Y. S., "Fabrication and Characteristics of Mesophase Pitch-based Graphite Foams Prepared Using PVA-AAc Solution," Appl. Chem. Eng., 26(6), 706-713(2015). https://doi.org/10.14478/ace.2015.1102
  19. Pandey, P. K., Smitha, P. and Gajbhiye, N. S., "Synthesis and Characterization of Nanostructured PZT Encapsulated PVA-PAA Hydrogel," J. Polym. Res., 15(5), 397-402(2008). https://doi.org/10.1007/s10965-008-9184-4
  20. Karthik, M., Faik, A., Doppiu, S., Roddatis, V. and Aguanno, B. D., "A Simple Approach for Fabrication of Interconnected Graphitized Macroporous Carbon Foam with Uniform Mesopore Walls by Using Hydrothermal Method," Carbon, 87, 434-443(2015). https://doi.org/10.1016/j.carbon.2015.02.060
  21. Hou, C., Zhang, Q., Li, Y. and Wang, H., "Graphene-polymer Hydrogels with Stimulus-sensitive Volume Changes," Carbon, 50(5), 1959-1965(2012). https://doi.org/10.1016/j.carbon.2011.12.049
  22. Kim, J. H. and Lee, Y. S., "Characteristics of a High Compressive Strength Graphite Foam Prepared From Pitches Using a PVAAAc Solution," J. Ind. Eng. Chem., 30, 127-133(2015). https://doi.org/10.1016/j.jiec.2015.05.013
  23. Lee, S. E., Kim, D., Lee, M. Y., Lee, M. K., Jeong, E. and Lee, Y. S., "Effect of Fluorination of Carbon Nanotubes on Physicochemical and EMI Shielding Properties of Polymer Composites," Polymer(Korea), 39(1), 114-121(2015).
  24. Park, M. S., Kim, K. H., Kim, M. J. and Lee, Y. S., "$NH_3$ Gas Sensing Properties of a Gas Sensor Based on Fluorinated Graphene Oxide," Colloids Surf. A Physicochem. Eng. Asp., 490, 104-109 (2016). https://doi.org/10.1016/j.colsurfa.2015.11.028
  25. Yoo, B. R., Park, I. J., Jo, S. M. and Hong, H. Y., "Synthesis and Application of Advanced Materials Based on Silicon & Fluorine-containing Compounds," Polymer Science and Technology, 21, 416-425(2010).
  26. Kim, J. H., Bae, T. S. and Lee, Y. S., "Effect of Fluorination of Hydrogels Containing CNTs on Controlled Drug Reactivity," Polymer(Korea), 39(6), 925-933(2015).
  27. Kim, J. H., Kim, D. Y., Jeong, E. and Lee, Y. S., "Characteristics of Fluorinated CNTs Added Carbon Foams," Appl. Surf. Sci., 360, 1009-1015(2016). https://doi.org/10.1016/j.apsusc.2015.11.111
  28. Lee, S. and Lee, B. J., "Carbon Nanotube Synthesis with High Purity by Introducing of $NH_3$ Etching Gas," Trans. KIEE., 62(6), 782-785(2013).