• Title/Summary/Keyword: surface culture

Search Result 1,184, Processing Time 0.036 seconds

Evaluation of Rail Surface Defects Considering Vehicle Running Characteristics (열차주행특성을 고려한 레일표면결함 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.845-849
    • /
    • 2024
  • Currently, rail surface defects are increasing due to the aging of urban railway rails, but in the detailed guidelines for track performance evaluation established by the country, rail surface damage is inspected with the naked eye of an engineer and with simple measuring tools. It is very important to discover defects in the rail surface through periodic track tours and visual inspection. However, evaluating the severity of defects on the rail surface based on the subjective judgment of the inspector has significant limitations in predicting damage inside the rail. In this study, the characteristics of cracks inside the rail due to rail surface damage were studied. In field measurements, rail surface damage was selected, old rail samples were collected in the acceleration and braking sections, and a scanning electron microscope (SEM) was used to evaluate the rail surface damage was used to analyze the crack characteristics. As a result of the analysis, the crack mechanism caused by the running train and the crack characteristics of the acceleration section where cracks occur at an angle rising toward the rail surface were experimentally proven.

Effects of Deep Seawater on the Growth of a Green Alga, Ulva sp.(Ulvophyceae, Chlorophyta)

  • Matsuyama, Kazuyo;Serisawa, Yukihiko;Nakashima, Toshimitsu
    • ALGAE
    • /
    • v.18 no.2
    • /
    • pp.129-134
    • /
    • 2003
  • In order to examine the effects of deep seawater (mesopelagic water in the broad sense) on the growth of macroalgae, the growth and nutrient uptake (nitrate and phosphate) of Ulva sp. (Ulvophyceae, Chlorophyta) were investigated by cultivation in deep seawater (taken from 687 m depth at Yaizu, central Japan, in August 2001), surface seawater (taken from 24 m depth), and a combination of the two. Culture experiments were carried out in a continuous water supply system and an intermittent water supply system, in which aerated 500-mL flasks with 4 discs of Ulva sp. (cut sections of ca. 2 $cm_2$) were cultured at 20$^{\circ}C$ water temperature, 100 $\mu$mol photons $m^{-2}{\cdot}s^{-1}$ light intensity, and a 14:10 light:dark cycle. Nutrient uptake by Ulva sp. was high in all seawater media in both culture systems. The frond area, dry weight, chlorophyll a content, dry weight per unit area, and chlorophyll a content per unit area of Ulva sp. at the end of the experimental period were the highest in deep seawater and the lowest in surface seawater in both culture systems. These values, except for dry weight per unit area and chlorophyll a content per unit area, for each seawater media in the intermittent water supply system were higher than those in the continuous water supply system. We conclude that not only deep seawater as the culture medium but also the seawater supply system is important for effective cultivation of macroalgae.

Impacts of the Hydraulic Loading Rate and C/N Ratio on Nitrification in a Trickling Filter with Styrofoam Bead Media in Seawater (살수식 여과조의 질산화작용에 대한 수리학적 부하량과 C/N 비의 영향)

  • Choi, TaeGun;Kim, Pyong-kih;Park, JeongHwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.3
    • /
    • pp.256-267
    • /
    • 2019
  • Styrofoam beads, which are relatively inexpensive and can provide a large specific surface area, were tested as filter media. Styrofoam beads with a diameter of $3{\pm}0.5mm$ were used; the specific surface area of the beads was $1,034m^2{\cdot}m^{-3}$. Five independent recirculating culture systems were used in the experiment. Each system consisted of one culture tank and three trickling bio-filters. Using the systems, nitrification efficiency was evaluated with respect to hydraulic loading rate (HLR) and carbon/nitrogen (C/N) ratio. The lowest ammonia and nitrogen concentrations were $0.84mg{\cdot}L^{-1}$ and $1.30mg{\cdot}L^{-1}$, respectively, observed at an HLR of $50.9m^3{\cdot}m^{-2}{\cdot}h^{-1}$. Nitrification efficiency in the culture tank was highest at a C/N ratio of 0, with ammonia and nitrite nitrogen concentrations of $0.32mg{\cdot}L^{-1}$ and $0.90mg{\cdot}L^{-1}$, respectively. Ammonia and nitrite nitrogen concentrations in the culture tank abruptly changed at C/N ratios ${\geq}3$.

THE MORPHOLOGICAL OBSERVATION OF HUMAN PERIODONTAL LIGAMENT CELLS ATTACHMENT AND SPREADING ON THE SURFACE OF SLIDE GLASS (치주인대세포의 부착과 전개에 관한 형태학적 관찰)

  • Lee, Jin-Mi;Suh, Jo-Young;Park, Joon-Bong
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.97-108
    • /
    • 1993
  • One of the important initial events required for periodontal regeneration is the attachment and subsequent spreading of periodontal ligament cells on the root surface. The purposes of this study is to investigate the attachment and spreading pattern of human periodontal ligament cell on the surface of glass slides. After establishment of a cell line of the primary cell culture from the periodontal ligament of 1st premolar teeth which were extracted for the purpose of orthodontic treatment, author dispersed the cells at $5{\times}10^3\;cells/ml$ into the each 35mm culture petri-dish containing 2 glass slides. To observe the morphological changes of the cells which attached to the surfaces of glasses at every designed time schedule, author used the inverted phase contrast microscope and scanning electron microscope. During the whole experiment culture condition was at $37^{\circ}C$, 100% Humidity, 5% $CO_2$ gas incubator. The following results were obtained. Periodontal ligament cells showed spherical outline and started to attach to glass surface by basal sytoplasmic extension after 10min in culture. After 30min in culture, periodontal ligament cells were attached to glass surface by well - developed filopodia which protruded from the lamellipodia. The cell surface is covered with bubble-like structures and occasional microvillus can be seen with diffculty among these structures. After 1.5hr in culture, peridontal ligament cells shhowed radially well-spread cytoplasm and the nucleus was centered on its cytoplasm. Unspread central region of the cell was covered with numerous microvilli. The change of cell attachment and spreading pattern was manifest at 6hr in culture. At this time, periodontal ligament cell showed elongated outline and an oval-shaped nucleus. After 12hr in culture, periodontal ligament cells showed more stretched fibroblast-like appearance with polarity. Two long lamellipodia can be seen around the both terminal ends of cells. After 24hr in culture, periodontal ligament cells showed spindle shapes and an oval-shaped nucleus was slanted toward one side of the cell.

  • PDF

Optimal Conditions of Co-Immobilized Mixed Culture System with Aspergillus awamori and Zymomonas mobilis (Aspergillus awamori와 Zymomonas mobilis로 구성된 혼합고정화 배양계의 최적 조건)

  • 박석규;이상원;손봉수;최수철;서권일;성낙계;김홍출
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.5
    • /
    • pp.803-810
    • /
    • 1995
  • Co-immobilized mixed culture system(A-Z system) composed of two different oxygen-demanding strains, aerobic(Aspergillus awamori) and anaerobic(Zymomonas mobilis) strains, in a Ca-alginate gel beads was developed to increase ethanol production from raw starch as a carbon source. Optimal mixture ratio of A. awamori and Z. mobilis was $1.25{\times}10^{9}\;spores/L-gel$ and 0.5g cells/L-gel, respectively. After 120 hours of cultivation, gel beads distinguished oxygen-rich surface for A. awamori from oxygen-deficient central part for Z. mobilis. At A-Z culture system, yield of ethanol on glucose, $Y_{p/s}=0.18$, was very low and there was high leakage of cells from surface of gel beads. At A-Z 36 cultrue system with changing silicon check valve for cotton plug at 36 hours in A-Z culture system, there was no cell leakage from gel beads, pH was maintained at around 4.3 during cultivation, and yield of ethanol on glucose, $Y_{p/s}=0.36$, showed 2 times higher than that of control culture system(cotton plug culture).

  • PDF

Oxygen Transfer in Animal Cell Culture by Using a Silicone Tube as an Oxygenator (실리콘 튜브를 이용한 동물세포 배양장치의 산소전달)

  • 정흥채;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.4
    • /
    • pp.445-450
    • /
    • 1992
  • An enhancement of the oxygen transfer rate in a 1$\ell$ bioreactor for mammalian cell culture by using a silicone rubber tubing as an oxygenator was investigated. When the silicone membrane was used to supply oxygen to the culture broth, the oxygen transfer coefficients ($k_{\iota}a$) measured in deionized-distilled water were markedly increased. Effect of surface aeration without the tubing aeration was very low under $1.0hr^{-1}$ of $k_{\iota}a$. The enhancing effects of agitation rates on $k_{\iota}a$ were much more effective than those of aeration rates. The increase of $k_{\iota}a$ with increasing tube length was observed as a result of the large surface area for oxygen supply. However, 2 m of the tube length was adequate for a 1$\ell$ vessel. The larger blade type of impeller was effective to enhance the kLa values because of its high mixing intensity. In culture medium supplemented with 5% serum, kLa values were reduced to approximately 40% probably due to the viscosity. We also obtained the normal cell concentration of $5{\times}10^6$ cells/m$\ell$ of HepG2 on microcarriers, which could be achieved in a typical bioreactor for animal cell culture.

  • PDF

Ethanol Production from Glycerol using Pachysolen tannophilus in a Surface-aerated Fermentor (Surface-aerated fermentor에서 Pachysolen tannophilus를 이용한 glycerol로 부터 ethanol 생산)

  • Kim, Yi-Ok;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.23 no.7
    • /
    • pp.886-892
    • /
    • 2013
  • We investigated ethanol production from glycerol after screening of the yeast Pachysolen tannophilus ATCC 32691. For yeast to produce ethanol form glycerol, it is important that aeration is finely controlled. Therefore, we attempted to produce ethanol using a surface-aerated fermentor. When 880 ml of YPG medium (1% yeast extract, 2% peptone, 2% glycerol) was used to produce ethanol, the optimal aeration conditions for ethanol production were a surface aeration rate and agitation speed of 500 ml/min and 300 rpm, respectively. In a fed-batch culture, the maximum ethanol production and the maximum ethanol yield from glycerol (Ye/g) was 5.74 g/l and 0.166, respectively, after 90 hr using the surface-aerated fermentor.

Deep Learning-based Rail Surface Damage Evaluation (딥러닝 기반의 레일표면손상 평가)

  • Jung-Youl Choi;Jae-Min Han;Jung-Ho Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.505-510
    • /
    • 2024
  • Since rolling contact fatigue cracks can always occur on the rail surface, which is the contact surface between wheels and rails, railway rails require thorough inspection and diagnosis to thoroughly inspect the condition of the cracks and prevent breakage. Recent detailed guidelines on the performance evaluation of track facilities present the requirements for methods and procedures for track performance evaluation. However, diagnosing and grading rail surface damage mainly relies on external inspection (visual inspection), which inevitably relies on qualitative evaluation based on the subjective judgment of the inspector. Therefore, in this study, we conducted a deep learning model study for rail surface defect detection using Fast R-CNN. After building a dataset of rail surface defect images, the model was tested. The performance evaluation results of the deep learning model showed that mAP was 94.9%. Because Fast R-CNN has a high crack detection effect, it is believed that using this model can efficiently identify rail surface defects.

The Recycling Water Treatment of High Density Fish Culture System Using the Aerated Submerged Filter -1. Ammonia Removal Characteristics in Sea Water- (폭기식 잠수여상을 이용한 고밀도 양식장의 순환수 처리 -1. 해수중의 암모니아 제거 특성-)

  • LEE Heon-Mo;LEE Jae-Kwan;JUNG Byung-Gon;YANG Byung-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.5
    • /
    • pp.502-509
    • /
    • 1993
  • Submerged filter process was used to evaluate the nitrifying efficiency of ammonia in the recycling water of marine aquatic culture system. The ammonia removal efficiency was achieved as high as $99\%$ at the hydraulic surface loading rate of up to $4.3{\ell}/m^2-day$. And the nitrite accumulation did not occur in the reactor even when the hydraulic surface loading rate of up to $36.8{\ell}/m^2day$ was applied. In the present study, the relationship between the effluent ammonia concentration and ammonia surface loading rate was formulated as an equation. The attachment rate of biofilm on the filter media at the ammonia surface loading rate of 62.3 and $311.7mg/m^2day$ was 15 and $55mg/m^2-day$, respectively, showing the linear relationship between the attachment rate and ammonia loading rates. Biofilm thickness and density of the filter media were found to be the function of the ammonia loading rate.

  • PDF